
Rpple Graphics

Jeffrey

5tanton

APPLE GRAPHICS &
ARCADE GAME DESIGN

BY JEFFREY STANTON

THE BOOK CO.
1 1223 S. HINDRY AVE.
LOS ANGELES, CA 90045

1

ACKNOWLEGEMENTS

A book like this was a long and difficult undertaking. I would like to thank
my publisher, James Sadlier for having faith in the book despite its long
development time, Don Worth and Lou Rivas for reading the book for

technical accuracy, and John Dickey and Gary Kevorkian who edited this

book. I would also like to thank Dale Washlake, Phil Wasson, Jim Nitchals,

and others who answered many ofmy graphics questions, and Shannon Hogan
who did the cover art from one of my far fetched ideas.

Apple and DOS Tool Kit are trademarks of Apple Computer Co.
Pacman is a trademark of Bally.

Sneakers and Gamma Goblins are trademarks of Sirius Software.

Galaxian is a trademark of Williams.

Scramble is a trademark of Stern.

Space Invaders is a trademark of Namico.
Rip Off is a trademark of Sega.

Threshold and Gamma Goblins are trademarks of On Line Systems.

Missile Command is a trademark of Atari.

Copyright © 1982 by Jeffrey Stanton and The Book Company. All rights

reserved. Printed in the United States of America. No part of this publication

may be reproduced or distributed in any form or by any means, or stored in a

data base or retrieval system, without the prior written permission of the

publisher, with the exception that the program listings may be entered, stored,

and executed in a computer system, but they may not be reproduced for

publication.

TABLE OF CONTENTS

INTRODUCTION — 6

CHAPTER 1 APPLESOFT HI-RES — 9

1. Description and Screen Layout

2. Screen Switches and Control

3. Memory Considerations

4. Colors and Background Fill

5. Page Flipping

6. Apple Shape Tables

A: Designing Shapes

B: Assembling a Directory

7. Graphic Animation Using Shape Tables

8. Character Generators

CHAPTER 2 LO-RES GRAPHICS — 35

1. Introduction

2. Basic Assembly Language
3. Lo-Res Screen Architecture

4. Plotting Dots and Lines

5. Designing the “Breakout Game”

CHAPTER 3 MACHINE LANGUAGE ACCESS TO APPLESOFT
HI-RES ROUTINES — 69

1. Description and ROM Addresses

2. HPLOT Shapes and Animation

3. Apple Shape Tables in Animation

CHAPTER 4 HI-RES SCREEN ARCHITECTURE — 87

1. Screen Design and Layout

2. Raster Graphics (Bit Mapped) Shape Tables

A: Pros and Cons

3

B: Forming Bit Mapped Shape Tables

C: Shifted Tables for Precise Positioning

D: Color Problems

CHAPTER 5 BIT MAPPED GRAPHICS — 111

1. Drawing Bit Map Shapes to the Hires Screen

2. Color Problems with Horizontal Movement
3. Screen Erase

4. Selective Drawing Control & Drawing Movement Advantages
5. Interfacing Drawing Routines to Applesoft

CHAPTER 6 ARCADE GRAPHICS — 147

1. Introduction

2. Paddle Routines

3. Dropping Bombs and Shooting Bullets

4. The Invaders Type Game
5. Steerable Space Games
6. Steerable and Free Floating Space Ships

7. Debug Package

8. Laser Fire & Paddle Button Triggers

9. Collisions

10. Explosions

1 1 . Scorekeeping

12. Page Flipping

CHAPTER 7 GAMES THAT SCROLL — 237

1. Games That Scroll

2. Hi-Res Screen Scrolling

A: Vertical Scrolling

B: Horizontal Scrolling

CHAPTER 8 WHAT MAKES A GOOD GAME — 281

1. What Makes A Good Game
2. Successful Game Examples

5

INTRODUCTION

A programmer s ability to create Apple graphics can be compared to an ar-
tist’s ability with a sketchpad or an animator’s skill with animation. Each in
their own way creates images that are in some way entertaining. The viewer,
however, is only interested in the final effect, not the tedious technical process
that the artist or programmer had to apply to produce that effect.

The Apple II is a wonderful graphics tool, but unfortunately highly complex
to use at any level other than Applesoft BASIC. The scattered magazine ar-
ticles covering Apple graphics have shown the machine’s complexity without
presenting an adequate solution to the problem of graphics programming con-
cepts. Those who understand the process and have mastered it are too busy
writing programs to share their knowledge.

Magical references like “Raster Graphics” and “Bit Mapping” are spoken
of as if they are secret techniques practiced only by the top programmers. Their
games, such as “Raster Blaster”, “Galaxian”, “Sneakers”, and “PacMan”
have both awed wishful game designers and shown them the limitations of their
own programming techniques.

This book will allow you to enter the world of Apple graphics, in which your
most imaginative ideas can be animated. The various chapters will attempt to
present a comprehensive course in Hi-Res graphics and high speed arcade
animation. The major part of this material requires the ability to do assembly
language programming. However, since this book was designed to increase the
novice programmer’s graphics skill, it assumes no prior knowledge of Apple
graphics. The book begins with the bare bones graphic techniques of Applesoft
BASIC and goes on to teach elementary machine language techniques that will
enable the reader to program simple high speed games using the ROM’s built
in graphics routines.

Bit mapping (or raster graphics) and its use in high speed arcade animation
will be covered in great detail. The approach throughout the book is to teach by
example. The techniques required to program the three classic game types, (1)
Space Invaders, (2) Asteroids, and (3) scrolling games like Defender, are ex-
plored. There are sections on paddle control, firing lasers, dropping bombs,
explosions and scoring. Page flipping and scrolling techniques are also discuss-
ed.

The only requirements for this book are an inquisitive mind, perseverance,
and a good assembler. Although prior assembly language programming ex-
perience is not necessary, you won’t be able to write code without an
assembler. The Apple’s mini-assembler is totally inadequate for such a task.

6

I will attempt to explain the ideas in this book through a combination of text,

drawings, and flow charts. The concepts in this book may seem easy at times,

and somewhat difficult at other times. The Apple with its many idiosyncrasies

is a strange beast to master. My advice is to read the book in stages and try the
examples. Learn how they work.

While my goal for presenting this material was to educate a new generation
of arcade game designers, I dread the proliferation of copy cat games. The
world doesn’t need an eighth Asteroids game, or a tenth PacMan game. They
have been done. I do hope that programmers both young and old will use their

imaginations to create something novel and exciting.

JEFFREY STANTON
VENICE, CALIFORNIA
APRIL 16, 1982

PROGRAM LISTINGS AVAILABLE ON DISK

The majority of the code listed in this book is available on diskette to readers

who disdain typing long computer programs. The disk is unprotected. The cost

of this disk is a nominal $15.00 plus $1.50 postage to U.S. residents (foreign

orders please add $5.00 for air mail). California residents add 6% state sales

tax (Los Angeles County residents add 6 XA % sales tax). Available from The
Book Co., 11223 S. Hindry Avenue, Suite 6, Los Angeles, CA 90045. (See

order card at back of this book.)

A bit-mapping utility program, which was mentioned briefly in Chapter 4, is

available to readers who purchase the above disk for an additional $10.00 plus

tax. It enables the user to design any multi-colored bit-mapped shape on a grid

49 pixels wide by 32 lines deep. The program calculates the subsequent shape

table in hexadecimal for both even and odd starting offsets, plus six additional

shifted tables if that option is selected. Shapes can be displayed in their actual

size and color as well as saved to disk. The program supports a line printer but

it is not required.

The Applesoft and machine language object files provided will run on any
standard Apple II Computer, but the assembly language source code requires

one of three assemblers to interpret them. Big Mac and TED II + assemblers

are available from Call A.P.P.L.E. Additionally, Merlin is available from
Southwestern Data Systems. These binary source files can also be reformated

for use in other assemblers like Lisa 2.5 or Tool Kit by using a text editor such

as Apple Pie.

8

CHAPTER 1

APPLESOFT HI RES

The Apple II computer has the ability to display color graphic images on a
video monitor or television screen. It displays these images through a process
known as Memory Mapped Output. Various circuits scan specific areas of
Random Access Memory (RAM) to determine what should be displayed on
the screen. These circuits convert memory information into images containing
pixels or dots that are either turned on or off at particular screen positions.

Each memory location contains a coded series of instructions for a particular
segment of the Hi-Res screen. Thus the hardware maps the image coded in

memory to the video screen.

The Apple II computer has two distinct graphics modes. Lo-Res graphics,
which occupies the memory space reserved for the text page ($400 - $800), has
a resolution of 40 dots horizontally by 48 dots vertically. Each dot is very coarse
(7 X 8) pixels. Any one of sixteen colors can fill each of the 1920 positions on
the screen. Hi-Res graphics, on the other hand, is much more detailed or
dense. The resolution is 280 horizontal dots by 192 vertical dots. This gives

53,760 points on the screen. However, only six different distinct colors are
available in this graphics mode. (There are actually eight colors including two
whites and two blacks.)

Both graphics modes can either be full screen or they can be a mix of
graphics and four lines of text at the bottom of the screen. This format reduces
the Lo-Res screen to 40 lines and the Hi-Res screen to 160 lines.

Each of the graphics modes has two distinct pages or screens. They reside in

specific areas of memory which are hardware set. Each screen can be viewed
separately by setting a series of software switches that are located in Read Only
Memory (ROM). These are not real physical switches but switches that can be
toggled by POKEing values to their ROM reserved memory locations. These
switches tell the video hardware to display either text or graphics, Lo-Res or
Hi-Res, full screen graphics or mixed text and graphics, and either page 1 or
page 2.

When you execute the GR statement in BASIC
,
the computer turns on the

Lo-Res graphics mode, clears display memory so that the screen is black, and
defaults to four lines of text at the bottom of the screen. The text window can be
eliminated by typing the statement POKE - 16302,0, thus giving full screen
Lo-Res graphics. Similarly, the HGR statement turns on page one Hi-Res
graphics, clears Hi-Res memory so that the screen is black, and defaults to the
mixed text and graphics mode. Full screen graphics can be achieved by the
statement, POKE - 16302,0. And if you wish to view page 2 of Hi-Res

9

GRAPHICS FULL SCREEN

-16304 -16302
$C050 $C052

TEXT MIXED TEXT
& GRAPHICS

-16303 -16301
$C051 SC053

PAGEl L0-RES

-16300 -16298

SC056

"S'
PAGE2 HI-RES

-16299 -16297
$C055 $C057

memory, the command HGR2 turns it on. The statement POKE - 16301,0
sets full screen graphics for page 2

.

The principal disadvantage of using HGR or HGR2 is that executing either
of these commands clears the Hi-Res page selected, regardless of your wishes.
There are times when you have produced a display and want to switch to a full

page of text. If you return from text mode through the above commands, your
display will be erased.

It is possible to enter the Hi-Res graphics mode without erasing the display
screen. If you set the following soft switches which reside in reserved memory
locations - 16304 through - 16297 ($C050 through $C057), you can display
Hi-Res graphics page 1 without erasing its previous contents.

POKE - 16304,0 SETS GRAPHICS MODE
POKE - 16297,0 SETS HI-RES MODE
POKE - 16300,0 SELECTS HI-RES PAGE 1

Hi-Res page 2 can be displayed with the following commands:

POKE - 16304,0 SETS GRAPHICS MODE
POKE - 16297,0 SETS HI-RES MODE
POKE - 16299,0 SELECTS HI-RES PAGE 2

If you wished only to switch displays from Hi-Res page 1 to Hi-Res page 2,
only the last command is necessary because the first two commands were
previously set.

I should point out that the command 4 {TEXT” will normally return you to
page one of the text mode in Applesoft, but may not do so in Integer BASIC. If
page two graphics were previously being displayed, the computer would return
to page 2 of the text mode. Since this isn’t the screen where the commands that
you are typing are being displayed, the keyboard would consequently appear to
be dead. Page one text can be selected with the statement, POKE - 16300,0.

MEMORY CONSIDERATIONS

The two Hi-Res screens reside at memory locations 8192 -16383
($2000 -$3FFF) for page 1, and at 16384 - 24575 ($4000 -$5FFF) for page 2.

These locations are permanently set. When programming in either BASIC,
some considerations must be made as to where you should put your programs
so that they don’t conflict with the Hi-Res graphics screens.

If we examine an Integer BASIC program memory map below, we see that
the program begins at HIMEM:, which is set by the computer to be just below
DOS. Variables are stored beginning at LOMEM:, which is normally set just
above the text page at location 2048 ($800). Unless you have some huge storage
arrays or a very long program, neither the program nor its variables will cross
the Hi-Res screen memory boundary. For safety’s sake, it is often better to set

LOMEM: 16384 ($4000) so that no conflict could arise. This is especially true if

both Hi-Res screens are being used. In that case, set LOMEM:24576 ($6000).

PROGRAM LINES
BUILD DOWN

4

-(HIMEM:
LOCATIONS

VARIABLE STORAGE
BUILDS UP LOCATIONS

U-LOMEM:

(202,203)

(204,205)

INTEGER BASIC PROGRAM MEMORY MAP

Applesoft, on the other hand, stores its program just above the text page at

2048 ($800). Program lines build upwards towards the top of memory. As the
program gets longer, LOMEM:, which is the end of the Applesoft program, is

pushed upwards. Simple variables and array variables begin just above
LOMEM:, and string storage beginning at HIMEM:, builds downward.
Thus, setting LOMEM: to a value above the Hi-Res screen would not relocate
the Applesoft program nor prevent a long program from occupying the same
memory space as the Hi-Res screens.

11

K-HIMEM:
STRING STORAGE
BUILDS DOWN

t

ARRAY VARIABLES &
STRING POINTERS

STRING VARIABLES &
STRING POINTERS

PROGRAM LINES
PUSH LOMEM: UP

-K-LOMEM:

APPLESOFT BASIC PROGRAM MEMORY MAP

The solution is to set the pointers to the beginning of program text to a value
above the Hi-Res screen(s) which you are using. These pointers must be set
prior to loading or running the Applesoft program.
The easiest method for accomplishing this is to write an EXEC file which

will automatically set these pointers and load or run your program in the pro-
per position. The two pointers that must be set are at locations 103 and 104
decimal, lo byte and hi byte respectively. These are the pointers to the begin-
ning of program text. A reset of the pointers and linkage to either firmware
Applesoft ROM or Applesoft in the language card can be assured with a call to
the subroutine at 54514 ($D452). One of the idiosyncrasies of this method re-
quires that a zero byte precede the main program. Therefore the pointers are
set one byte higher than requested, and the zero byte is poked into the first
position. The following short program will create an EXEC file that will put
your Applesoft program in the proper place, free of interference from your
graphics.

12

10 D$ = CHR$ (4): PRINT D$;"N0M0N C,I,0
20 HOME
25 PRINT "THIS PROGRAM CREATES AN EXEC FILE THAT"
26 PRINT "RELOCATES AN APPLESOFT PROGRAM TO SOME"
27 PRINT "ADDRESS OTHER THA $800 (2048 DECIMAL)"
30 VTAB 6: INPUT "NAME OF APPLESOFT PROGRAM? ";FILE$: IF FI
LE$ = "" THEN 30
40 PRINT : PRINT "ENTER THE DECIMAL ADDRESS FOR THE START":
INPUT "OF THE PROGRAM START

45 IF START < 2047 THEN PRINT : PRINT "VALUE MUST BE GREAT
ER THAN 2047": PRINT : GOTO 40
50 PRINT : INPUT "NAME OF EXEC FILE: " ;EFILE$
55 S = START + 1:HB = INT (S / 256) :LB = S - HB * 256
60 PRINT D$; "OPEN ";EF$: PRINT D$; "DELETE" ;EF$
65 PRINT D$;"OPEN ";EF$: PRINT D$; "WRITE ";EF$
70 PRINT "FP": PRINT "HOME: POKE 50,128"
80 PRINT "P0KE103, ";LB;

"

85 PRINT "P0KE104,";HB;"
87 PRINT "POKE "; START ;",0"

90 PRINT "LOAD ";FILE$
95 PRINT "CALL54514": PRINT "P0KE50,255"
100 PRINT "RUN": PRINT D$; "CLOSE"
105 END

COLOR & BACKGROUND FILL

There are eight color choices (0-7) on the Hi-Res screen. These are selected
by the HCOLOR statement. Since the screen is arranged in alternating col-

umns of either violet-green or blue-orange colors, depending on whether the hi
bit is set in a screen memory byte, the absence of color produces two different

blacks, and the presence of two adjacent lit pixels produces two different

whites. (See chapter 5 for a more detailed explanation.) Thus, only six distinct

colors are available. These are listed in the following chart.

13

COLOR NUMBER

BLACK 0
GREEN 1

VIOLET 2

WHITE 3
BLACK 4

ORANGE 5

BLUE 6
WHITE 7

Sometimes it is desirable to clear the screen to a background color other than
black. This can be accomplished by calling an Applesoft ROM subroutine
located at decimal 62454. This clears the screen you used last, regardless of
switch settings, to the color most recently HPLOTed. Of course, a call to this
subroutine must be preceded by a HPLOT statement. For example, to clear
the background to green, try the following:

100 HCOLOR = l:HPLOT 0,0 :CALL 62454

PAGE FLIPPING

Using both Hi-Res screens is an effective way of smoothing animation, or
creating an image on one screen while viewing the alternate screen. When a
group of objects or lines are drawn successively to the screen during an anima-
tion frame, the last object drawn is on screen only a fraction of the time that the
first object is on the screen. And if there are many large objects, the continuous
drawing becomes noticeable.

Page flipping is an effective method to reduce flicker between animation
frames. However, one assumes a reasonable animation frame rate of at least 10
frames per second, or the animation appears slow and jerky. The trick to this
method is controlling the screen that is drawn to, regardless of the screen
switch positions. There is a pointer in zero page, decimal location 230 ($E6)
that sets which screen 'is plotted to. A POKE 230,32 indicates screen #7, andPOKE 230,64 indicates screen #2.

The following example demonstrates the technique. The program HPLOTs
thirty random line segments on one screen while the other screen is viewed. It
then changes viewing screens to the screen where the image had just been
drawn, and erases the opposite screen before randomly drawing thirty new line
segments. The result is a series of completed line drawings that change from
one image to the next without anyone being aware that they are being drawn
elsewhere.

When screen #1 is viewed by toggling the switch with POKE - 16299,0 ,
the

statement, POKE 230,64 ,
tells the computer to draw to screen #2. Since $E6

points to screen #2 when the clear screen is called at line 52, it clears screen #2

before plotting our thirty random line segments. When we switch viewing

screens to the completed picture with a POKE - 16300,0 ,we reset $E6 to the

opposite screen with a POKE 230,32. Now we are viewing screen #2, and
drawing on screen #1

.

5 XI = 0:Y1 = 0
10 REM CLEAR BOTH SCREENS
20 HOME : HGR : HGR2 : HC0L0R= 3

30 REM NOW LOOKING AT PAGE #2
40 REM SET DRAWING MODE POINTER (E6) TO SCREEN #1
50 POKE 230,32
51 REM LEAR SCREEN #1
52 CALL 62450
60 FOR I = 1 TO 35
70 X2 = INT (RND (1) * 280)
80 Y2 = INT (RND (1) * 192)
90 HPLOT XI, Y1 TO X2,Y2
100 XI = X2:Y1 = Y2
110 NEXT I

120 REM LOOK AT SCREEN #1 FULL SCREEN
125 POKE - 16300,0: POKE - 16302,0
130 REM SET DRAWING MODE POINTER (E6) TO SCREEN #2
135 POKE 230,64
136 REM CLEAR SCREEN #2
137 CALL 62450
145 FOR I = 1 TO 35
150 X2 = INT (RND (1) * 280)
160 Y2 = INT (RND (1) * 192)
170 HPLOT XI, Y1 TO X2,Y2
180 XI = X2:Y1 = Y2
190 NEXT I

200 REM LOOK AT SCREEN #2
210 POKE - 16299,0
230 GOTO 50

15

As you view the different supposedly random screens, you will notice that
the screens appear to repeat every few frames. The repetition, although not
perfect, is due to a faulty random number generator in Applesoft. This pro-
gram graphically illustrates the fault.

A demonstration of the same program without page flipping can be shown
If you take the previous listing and make the following changes, the images can
be seen as they are drawn.

DELETE LINES 50 & 135
52 HGR2 : POKE- 16302,0
125 POKE -16299,0

137 HGR : POKE-16302,0
210 POKE -16300,0

230 GOTO 52

APPLE SHAPE TABLES

The Apple II offers a very powerful feature in Applesoft BASIC called shape
tables. They are essentially figures or shapes that use tiny vectors to quickly
generate their form. They are very flexible in that they can be plotted anywhere
on the Hi-Res screen without destroying the background, and they can be
scaled (expanded) and rotated. These shapes are often used in animation and
game design.

A shape table can consist of up to 255 different shapes. Each shape in the
table is generated by outlining it with tiny unit vectors which are all the same
length, but may take any of four directions (up,down, left,right). The vectors
are placed head to tail until the entire shape is outlined. These vectors can also
be of two types: plot vectors or move-without-plotting vectors. Then, using a
key, these direction vectors are encoded into a string of hexadecimal bytes
which are stored in memory as part of a shape table.
The procedure for creating a shape table isn’t difficult, but it is time-

consuming and quite prone to error if you aren’t careful. The method, due to
the nature of its encoding, has several peculiarities that the programmer should
be aware of. The most important point, one that is rarely explained, is that the
first vector is the position that the shape is drawn when X,Y coordinates are
specified. For example, if you wish to draw a square shape to the screen that is
two vector units per side, you will prefer to have the shape drawn so that it is
centered at the coordinates specified. But if you start your string of vectors at
the upper left corner instead of at the center, the shape’s center will be at the
corner. If the shape is rotated, it will pivot about that point instead of neatly
rotating about the square’s center. The solution to this misconception is to start
at the shape s center and make a move upwards without plotting to the outline
of the square’s shape.

16

DESIGNING AND FORMING SHAPES

The first step in this procedureis to define your shape or shapes on a piece of

graph paper. Direction vectors are drawn to indicate the sequence of coded in-

structions that will become our shape table. You can start your vectors around
your shape in either a clockwise or counterclockwise direction; it doesn’t mat-
ter. Next, we unwrap these vectors, starting with vector one at the left. This se-

quence forms a graphic list of our plotting vectors. Solid vectors indicate moves
while plotting, and dotted vectors indicate moves without plotting. These vec-

tor codes range in value from 0-7 and are summarized in the table below.

SYMBOL ACTION BINARY
CODE

DECIMAL
CODE

r
1

MOVE UP WITHOUT PLOTTING 000 0

1

> MOVE RIGHT WITHOUT PLOTTING 001 1

1

1

MOVE DOWN WITHOUT PLOTTING 010 2

*
< MOVE LEFT WITHOUT PLOTTING Oil 3

T
MOVE UP WITH PLOTTING 100 4

1

MOVE RIGHT WITH PLOTTING 101 5

i
MOVE DOWN WITH PLOTTING 110 6

< MOVE LEFT WITH PLOTTING 111 7

17

Each shape table byte (8 bits) is divided into three sections. Sections one andtwo are three bits each and contain any plotting vector. But section threewhich contains only two bits, can only hold certain plotting vectors. The three
vectors allowed are down, left and right without plotting. Most of the time this
section remams unused. This is acceptable, because if section three of theshape definition byte is zero, Applesoft ignores the section and advances to thenext byte of the shape.

SECTION 3 SECTION 2 SECTION 1

BIT
M = MOVEMENT BIT
P = PLOT /NO PLOT BIT

7

M
6

M
5

P
4

M
3

M
2

P
1

M
0

M

There is some ambiguity with plotting vectors that are equal to zero In sec-tions one or two, a zero specifies that you can “move up without plotting” butn section three it means ‘no movement and no plotting” This also means

rr„rP;'tr
a ' ^« £>-™£*£

~
sh a

Whe
xv

t

r
ree Se

u
Cti°nS are Set to zero

-
APPlesoft interprets it as an end of the

be presIm
S

in

m
a mw

6

If

°f“T UP.without Pitting” vectors that canbe present m a row If for example, sections one and two both containedmove up without plotting” vectors and the next instruction was a plot section three would be zero also. The value for the byte would be zero, or an endof shape You can use the “move without plotting” vector in a byte as long as adifferent plotting vector comes after it. So how do you move upwards severalvec or units without plotting? By not moving in a straight line. You can move

ofti

>

mes.

eft °nC
’ °ne

’ thCn UP °ne again ‘ This can be rePeated a number

ma
l
have left y°ur head in a spin, but an example will showhat shape tables can be constructed by mere mortals. I should point out thathe final table is in hexadecimal, and that once the binary coded^lotting vec-tors for each segment are arranged in groups of two or three within a byte it

encoding
CaSier ^ ^ im° tW° nibbles bits each

) f°r easier

18

SHAPE #1

*ta*t

-<
V

*
*

9fA/cr

SHAPE #2

DRAWINGS OF BOTH SHAPES

SHAPE #1 00 101

00 111

00 000

00 101

00 101

00 111

SHAPE #2 00 111

00 111

00 101

00 000

100 0010 1100 2C
110 = 0011 1110 = 3E
000 0000 0000 00

100 0010 1100 2C
110 0010 1110 2E
110 0011 1110 3E
110 0011 1110 3E
100 0011 1100 3C
100 0010 1100 2C
000 0000 0000 00

ASSEMBLING A SHAPE TABLE DIRECTORY

Shape tables are preceded by a shape table directory which contains infor-

mation concerning the number of shapes in the table, and pointers to the

beginning of each shape. The first byte contains the number of shapes (0-255),

the second byte is unused, and the remaining pairs of bytes contain the offsets

to each shape in the table. The actual number of pairs depends on the number
of shapes in the table’s first byte.

Although space may be defined for a certain number of shapes when the

directory is constructed, there is no rule that says all these shapes need be in the

table. Most programmers leave extra space because it is somewhat difficult to

expand the table later if extra shapes are needed. A summary of the directory is

shown below.

19

DISPLACEMENT

0 NUMBER OF SHAPES
IN TABLE ($0 -FF)

1 UNUSED

2 OFFSET TO SHAPE 1

LO ORDER BYTE

3 OFFSET TO SHAPE 1

HI ORDER BYTE

2N+2 OFFSET TO SHAPE N
LO ORDER BYTE

2N+3 OFFSET TO SHAPE N
HI ORDER BYTE

2N+4

— — >

PLOTTING VECTORS
SHAPE 1

.

PLOTTING VECTORS
SHAPE N

LENGTH DEPENDS
ON NUMBER OF

SHAPES IN TABLE
(2 BYTES/SHAPE)

If we construct a directory for our previous two shape examples, it takes the

following form.

BYTE

0 02 NUMBER OF SHAPES
1 00 UNUSED
2 06 LO BYTE OF OFFSET TO SHAPE #1

3 00 HI BYTE
4 09 LO BYTE OF OFFSET TO SHAPE #2

5 00 HI BYTE
6 2C
7 3E C SHAPE #1

8 00 J
9 2C
A 2E /
B 3E f

C 3E y SHAPE #2

D 3C \
E 2C

)

F 00 J

This procedure is very time-consuming and, if the shape is complex, prone

to error. Fortunately, there are a number of commercial programs that can

perform this chore automatically. Most of these, in addition to the standard

shape creator, incorporate an editor for merging shapes from several different

tables.

Several products that I would recommend are Higher Graphics (Synergistics

Software), The Complete Graphics System (CO-Op Software), and Shape
Builder and Editor (Telephone Transfer Connection). These packages range in

price from $35 to $60.

The shape table creator which I’ve included below lacks an editor for merg-

ing, inserting, or deleting shapes. It is also limited to shapes with a maximum
size of 25 X 15 pixels. This is inherent in the design, which allows you to define

shapes precisely on an oversized grid.

The program is menu-driven and somewhat user-proofed to prevent “bom-
bing” the program in the midst of a hundred-shape-long table, which the user

in this case, might have neglected saving periodically to the disk. Once a shape

table is initialized, shapes are created one at a time with the command,
(C)reate. A starting point is chosen for the shape’s center. These values have

no relationship to the coordinates where the shape is plotted later, but is the

center of the shape and the point about which the shape is rotated with the

ROT command. Your shape doesn’t have to start there, but can be offset from

it or completely surround it.

21

The current cursor position can be moved by the IJ,K,M keys. If you want
to plot a point press the P key after a move. If you make a mistake, the E key
will erase the last plotted point; however,this must be done before the cursor ismoved again Sorry but it doesn’t step back through your keystrokes. Whenyou are finished with the shape, you simply (Q)uit.
When you are returned to the main menu, you have a choice of (V)iewing

the shape or (A)ddmg the shape to the table. Look at the shape first, because if
it is incorrect you can try again with the (C)reate command rather than add it
to the table You can also save the table or load a new table at any time

lhis Applesoft program must be relocated above Hi-Res screen page 1 Usethe program discussed earlier to create an EXEC file which will reset the
pointers. Set the loading address at 16385 decimal. The Shape Creator stores
its shape tables at $800, or 2048 decimal. If you choose to put your tables

IISXd ?HAPE
maK)

h' Pr°Sram a SP“iflC Sta"ing l0Cati0n address
•

Some of the readers who attempt to decipher my code will notice that I storeda value in the second position of the shape table directory. This location is nor-mally unused. I chose to use the location to keep track of the number of shapes
currently m the table. The first location contains the maximum numbe^of

Applesoft

3t ^ h°ld ' ThiS n°tati0n iS entirdy comPatible

1 D$ = CHR$ (4) :B$ = CHR$ (7)
3 AFLAG = 1;N = 0
5 POKE 232,0: POKE 233,3

FOR I = 0 TO 9
READ A: POKE 768 + I, A: NEXT I
DATA 1,0,4,0,62,36,45,54,4,0
TEXT : HOME
HTAB 13: PRINT "COMMANDS": PRINT
HTAB 9: PRINT "(I)NITILIZE SHAPE TABLE": PRINT
HTAB 9: PRINT "(C) REATE NEW SHAPE": PRINT
HTAB 9: PRINT "(A)DD SHAPE TO TABLE": PRINT
HTAB 9: PRINT "(V)IEW SHAPES": PRINT
HTAB 9: PRINT "(L)0AD SHAPE TABLE": PRINT
HTAB 9: PRINT "(S)AVE SHAPE TABLE": PRINT
HTAB 9: PRINT "(Q)UIT": PRINTnr\T*tnn • i

14

16

18

20
24
26
27
28
29
30
31

32
33
7:

PRINT "-

HOME POKE 34,1

34 REM MENU COMMANDS
3
- 16™)!

9

rore
AB

-
4

i6368”
"
C0MMAND? GET ^ :PK * PEEK (

41 IF PK = 73 THEN 50

22

42 IF PK = 67 THEN 100

43 IF PK = 65 THEN 500
44 IF PK = 86 THEN 600
45 IF PK = 76 THEN 65
46 IF PK = 83 THEN 700
47 IF PK = 81 THEN 2000
48 GOTO 39
49 REM INITILIZE TABLE
50 HOME : PRINT : INPUT " NO. OF SHAPES IN TABLE? ";MAX
52 POKE 2048, MAX
54 FOR I = 1 TO 2 * MAX + 1: POKE 2048 + 1,0: NEXT I

56 ADDR = 2050 + PEEK (2048) * 2

58 M = 2 + MAX * 2: POKE 2050, M - 256 * INT (M / 256)
59 POKE 2051, INT (M / 256)
60 HOME : GOTO 39
64 REM LOAD SHAPE TABLE
65 HOME : PRINT : INPUT " SHAPE TABLE NAME ? ";NAME$
67 PRINT D$; "BLOAD" ;NAME$;

" , A$800"

70 N = PEEK (2049) :MAX = PEEK (2048)
76 HOME : IF MAX > N THEN 39

78 PRINT "SHAPE TABLE FULL!": GOTO 2000
99 REM CREATE NEW SHAPE
100 IF N = MAX THEN 450
101 ADDR = 2048 + PEEK (2050 + 2 * N) + 256 * PEEK (2051 +
2 * N)

102 IF N = 0 THEN ADDR = 2050 + MAX * 2

103 IF AFLAG = 1 THEN N = N + 1

104 POKE 2049,

N

106 HGR : HCOLOR= 3: SCALE= 1: ROT= 0: CYCLE = 0
108 FOR X = 0 TO 250 STEP 10: HPLOT X,0 TO X,150: NEXT X

110 FOR Y = 0 TO 150 STEP 10: HPLOT 0,Y TO 250, Y: NEXT Y
112 HOME : VTAB 22
114 INPUT "ENTER STARTING COORDINATES X,Y? ";X,Y
115 IF X < 1 OR X > 25 THEN 112
116 IF Y < 1 OR Y > 15 THEN 112
117 X = 10 * X - 5:Y = 10 * Y - 5

118 DRAW 1 AT X , Y : XS = X:YS = Y

120 HOME : VTAB 22: PRINT "MOVE PLOT CURSOR WITH KEYS"
122 PRINT "J -LEFT, K -RIGHT

, I -UP, M - DOWN"
124 PRINT "P -PLOT ,E -ERASE LAST PLT

, Q -QUIT": POKE 36,
41
126 KY$ = "":KSVE$ = "": GOTO 145
128 IF FLAG = 1 THEN 132
130 XDRAW 1 AT XI, Y1
132 XI = X:Y1 = Y : FLAG = 0

23

135 XDRAW 1 AT X,Y
140 KI$ = KSVE$:KSVE$ = KY$
145 GET KY$
150 IF KY$ < > "I" THEN 160
155 SYMBOL = 0:Y = Y - 10: IF Y =
157 Y = Y + 10: CALL - 1052: GOTO
160 IF KY$ < > "K" THEN 170
165 SYMBOL = 1:X = X + 10: IF X <
167 X = X - 10: CALL - 1052: GOTO
170 IF KY$ < > "M" THEN 180
175 SYMBOL = 2:Y = Y + 10: IFY<
177 Y = Y - 10: CALL - 1052: GOTO
180 IF KY$ < > "J" THEN 190
185 SYMBOL = 3:X = X - 10: IFY=
187 X = X + 10: CALL - 1052: GOTO
190 IF KY$ < > "P" THEN 200
195 FLAG = 1: GOSUB 300: GOTO 135

> 0 THEN 225
145

=250 THEN 225
145

= 150 THEN 225
145

> 0 THEN 225
145

200 IF KY$ = "Q" THEN 400
205 IF KY$ < > "E" THEN 145
210 HCOLOR= 0:FLAG = 0: GOSUB 300
220 KSVE$ = KI$: HCOLOR= 3: GOTO 130
225 IF KSVE$ = "P" THEN SYMBOL = SYMBOL + 4
230 CYCLE = CYCLE +1
235 IF CYCLE < > 1 THEN 245
240 BYTE = SYMBOL: GOTO 128
245 IF CYCLE < > 2 THEN 270
250 BYTE = BYTE + 8 * SYMBOL
255 IF BYTE > 7 THEN 128
260 BYTE = BYTE + 8: POKE ADDR,BYTE:ADDR = ADDR +
265 BYTE = 24:CYCLE = 2: GOTO 128
270 IF SYMBOL > 3 THEN 280
275 BYTE = BYTE + 64 * SYMBOL
280 POKE ADDR, BYTE: ADDR = ADDR + 1

285 IF SYMBOL = 0 OR SYMBOL > 3 THEN 295
290 CYCLE = 0: GOTO 128
295 CYCLE = 1 : BYTE = SYMBOL: GOTO 128
300 FOR Y2 = Y - 3 TO Y + 3 STEP 6
,Y2: NEXT Y2
305 FOR Y2=Y-2TOY+2 STEP 4;
,Y2: NEXT Y2

HPLOT X - 1,Y2 TO X + 1

HPLOT X - 2,Y2 TO X + 2

XT°Y2
F°R Y2 = Y “ 1 T0 Y + 1: HpLOT X - 3,Y2 TO X + 3,Y2: NE

315 IF X = XS AND Y = YS THEN RETURN
320 XDRAW 1 AT X,Y: RETURN
400 IF KSVE$ < > "P" THEN 430

24

405 IF CYCLE < > 2 THEN 415

410 POKE ADDR, BYTE: ADDR = ADDR + 1

415 IF CYCLE < > 1 THEN 425
420 BYTE = BYTE + 32: GOTO 430
425 BYTE = 4

430 POKE ADDR, BYTE: ADDR = ADDR + 1

435 POKE ADDR, 0:ADDR = ADDR + 1

440 POKE - 16303,0: HOME : VTAB 22: PRINT " (A)DD SHAPE TO
TABLE IF CORRECT" :AFLAG = 0: GOTO 39
450 HOM : VTAB 22: PRINT " SHAPE TABLE FULL!!!": GOTO 39
499 REM ADD SHAPE TO TABLE
500 HOME : IF AFLAG = 1 THEN 540
502 OFF = ADDR - 2048: AFLAG = 1

505 IF N < > MAX THEN 515
510 HOME : VTAB 22: PRINT "TABLE FULL WITH THIS SHAPE!!!"
515 IF N > MAX THEN 550
520 POKE 2050 + 2 * N.OFF - 256 * INT (OFF / 256)
525 POKE 2050 + 2 * N + 1, INT (OFF / 256)
530 GOTO 39
540 VTAB 22: PRINT "NO SHAPE TO ADD!": GOTO 39
550 VTAB 22: PRINT "TABLE FULL CAN'T ADD SHAPE!!!": GOTO 39

599 REM VIEW SHAPES
600 HOME : VTAB 20: INPUT "VIEW LAST SHAPE Y/N? ";Q$
605 IF Q$ = "Y" THEN 627
610 VTAB 20: INPUT "WHICH SHAPE NUMBER TO VIEW? ";K
615 IF K = < N THEN 625
620 PRINT "SHAPE #";K;" DOESN'T EXIST!": GOTO 39
625 M = K: GOTO 630
627 M = N

630 HGR : POKE 233,8: SCALE= 1: DRAW M AT 50,75
635 SCALE= 3: DRAW M AT 165,75
638 VTAB 21: PRINT " SCALE=1 SCALE=3 SHAPE# ";M

640 SCALE= 1: POKE 233,3: VTAB 23: PRINT " PRESS ANY
KEY!": POKE 36,41
645 GET Q$: POKE - 16368,0: POKE - 16303,0
650 HOME : VTAB 22: IF AFLAG = 0 THEN PRINT " (A)DD SHAPE
TO TABLE IF CORRECT"
655 GOTO 39
699 REM SAVE
700 HOME : PRINT : INPUT "SHAPE TABLE NAME? ";NAME$
705 PRINT D$; "BSAVE" ; NAME$;

" , A2048 , L" ; ADDR
710 HOME : GOTO 39
2000 TEXT : END

25

SIMPLE GRAPHIC ANIMATION USING APPLE SHAPE TABLES

Apple shape tables can be incorporated very easily into games to produce
animation. The principle is elementary. A shape is drawn to the screen in one
position, then erased before moving it to the next position. If the move is in
small increments, and if the animation frame rate is fast enough, the object will
appear to have fluid motion. This is exactly how cartoons are animated.

Applesoft has a number of commands which work with shape tables. Any
shape in a table can be drawn to the screen with the command, DRAW N ATX,Y

, where N is the shape number in the table, and X and Y are the screen
coordinates to plot the shape. The DRAW command plots over the
background, thus erasing whatever was there previously. There is an alternate
command: XDRAW, which exclusive-or’s the screen where the shape is plot-
ted. This means if the background is black, the pixels are lit (white) when the
shape is XDRAWn to the screen, and they revert back to black when

vi^D^
Wn agam ’ But if the background is white and a white shape isXDRAWn to the screen, the pixels are reversed, so that the shape becomes

b ack. Similar complementary effects occur if the background color is green
blue, orange or violet.

Shapes can be rotated with the ROT command or scaled with the SCALE
command. Values can range from 0-255. Values for both SCALE and ROT
must be set to some value before drawing a shape for the first time.
When a shape is drawn at a scale larger than one

(SCALE =0 is equivalent
to 256) ,

the computer will draw more than one point for each unit vector. If
the scale is four, four points will be drawn for each single plotting vector.

Although rotation angles can range from 0-63, the actual number of rotation
angles depends on the shape’s scale. When the scale is set to 1, rotations can
only occur in 90 degree increments (0=0 degrees, 16 =90 degrees, 32 = 180
degrees, and 48 = 270 degrees). Shape rotations at SCALE = 2 can be in-
cremented by 45 degrees, and by specifying SCALE 5 or greater, all 64 rota-
tional angles are possible.

0

62 A

*
32

ROTATION ANGLES

26

When a shape is plotted to the screen, Applesoft needs to know the location

of the stored shape table. Locations 232 and 233 decimal contain the starting

address of the table, lo byte first. Thus, if the table were stored in memory at

$300 or 768 decimal, Applesoft would be informed with POKE 232,0 : POKE
233,3 (00 being the lo order byte and 03 being the hi order byte).

It is important to find a safe spot in memory for your table, a place where it

won’t be overwritten by either the Applesoft program or its variable storage

space. Short shape tables can be placed in page three of memory (locations

$300 - $3CF) as long as you aren’t using those locations for any other
machine language routine, such as sound. An alternate location would be
above the string storage space at HIMEM:. This involves resetting the
pointers to a lower value. Addresses 115 and 116 ($73 and $74) contain the
latest HIMEM: values, stored as lo byte first. The new address can be com-
puted by the following statements.

PRINT PEEK(116)*256 +PEEK(115) -X

where X is the length of the shape table.

HI = INT (HIMEM/256)

LO = HIMEM - 256 He HI

Then use the statements POKE 116,HI : POKE 115,LO to reset HIMEM:.
The shape table is then BLOADed at this address and locations 232 and 233

are set to point to the table.

Sometimes it is best to illustrate a concept with an example. Many animated
shapes like gun crosshairs are moved around the screen by paddle or joystick

control. We can take shape #2, which is shaped like a cross, from our previous
shape table example, and XDRAW it to the screen at a position determined by
the settings of the two paddles. Remember that if you XDRAW a shape to the
screen the first time, the shape appears. But if you XDRAW a shape that is on
the screen, it will disappear.

The paddles in this example do more than just position the crosshair. If but-
ton #0 is depressed, the paddle setting changes the SCALE, and if paddle #1 is

depressed, that paddle setting varies the ROT (rotation). Thus, you are able to

observe the various effects that occur when varying the drawing parameters.
Wrap-a-round is the most observable effect. This occurs when part of a shape
crosses the screen’s borders. This feature, which is performed automatically,
can be either a help or a hindrance depending on the desired effect. There are
times when you would like your shape to exit cleanly off one side of the screen
without appearing at the opposite side. In those cases, you will have to test the
screen coordinates so that wrap-a-round doesn’t occur. Others who have, for

example, a freely-floating spaceship, will be pleased by the convenience.
For convenience sake, I poked the shape table into memory at location 768

($300) with a FOR-NEXT loop that reads the values in a DATA statement.
The hexadecimal shape table values have been converted to decimal values for
the data. The alternate method is to enter the monitor and put the values into
memory directly at $300, then BSAVE the table (BSAVE SHAPE
A$300,L$10 or BSAVE SHAPE, A768,L16).

^

Several of the paddle-controlled variables are scaled in the program. Paddle

o^7o
S range fr°m 0 ' 255. To obtain X coordinate values, which range from

0-279, the paddle values are multiplied by 1.09, and Y values are divided by
1.6 to keep them within the screen boundaries of 0-191. The SCALE was also
trimmed to values 0 to 32 by dividing by 8. I think you will find the code and
the accompanying flow chart clear.

28

1 POKE 232,0: POKE 233,3
5 FOR I = 0 TO 15: READ V: POKE 768 + I,V: NEXT I

10 HGR : POKE - 16302,0: HCOLOR= 3
15 SCALE= 4: ROT= 0
20 BUT = PEEK (- 16287): IF BUT < 128 THEN 60
30 SALE= INT (PDL (0) / 8 + 1)

32 XDRAW 2 AT X,Y
34 FOR DE = 1 TO 50: NEXT DE
36 XDRAW 2 AT X,Y
40 BUT = PEEK (- 16287): IF BUT > 127 THEN 30
50 GOTO 90
60 BUT = PEEK (- 16286): IF BUT < 128 THEN 90
70 ROT= INT (PDL (1) / 4)
72 XDRAW 2 AT X,Y
74 FOR DE = 1 TO 50: NEXT DE
76 XDRAW 2 AT X,Y
80 BUT = PEEK (- 16286) : IF BUT > 127 THEN 70
90 X = INT (PDL (0) * 1.09)
100 Y = INT (PDL (1) / 1.60)
110 XDRAW 2 AT X,Y
120 FOR DE = 1 TO 50: NEXT DE
130 XDRAW 2 AT X,Y
140 GOTO 20
200 DATA 2,0,6,0,9,0,44,62,0,44,46,62,62,60,44,0

Drawing shapes to the screen with XDRAW commands isn’t the only
method of drawing if erasing background is not a concern. The DRAW com-
mand works just as well for putting an object on the screen. The XDRAW
command is still used for erasing the object. However, the DRAW command
doesn’t work properly at certain combined rotation angles and scale factors.

This can be demonstrated in the last program by changing the XDRAWs in

lines 32, 72 and 110 to DRAW commands. Now if the program is run, pixels
from the shape sometimes aren’t erased at some rotation angles with large scale
factors. Thus, it is safer to always use the XDRAW command.

29

CHARACTER GENERATORS

Character generators are designed to assist the programmer in placing text
on the Hi-Res screen. Their ability to mirror the print functions on the text
screen makes them extremely easy to use from BASIC programs Once the
character generator is engaged (usually by a CALL to its starting address) any
print statements within the BASIC program are printed on the Hi-Res screen
instead of the text page. The HTAB and VTAB functions are fully supported,
so that Hi-Res text can be accurately positioned.

Since the character set is in memory rather than in a ROM chip on the
keyboard, character sets can be changed at will. An Old English or Gothic
character set could easily be substituted for the standard ASCII character set
used in the ROM.

This versatility in character set design has led to users creating character sets
consisting of playing cards, alien monsters for games, or electrical symbols
used in schematics. While each character is only 7X8 pixels, groups of
characters can be arranged in a block to form larger shapes. A playing card
could easily consist of nine different characters, forming a three by three block.
If the QWEASDZXC letters were used to define the queen of hearts,
printing them to the screen in the following form would produce the playing

QWE
ASD
ZXC

With 96 different characters available in one character set, you could easily
represent the 13 card values, if two of the diagonal character elements defined
the suit.

Many programmers have taken advantage of the high speed drawing ability
of these machine language character generators to do animated graphics. Since
sequences of characters representing shapes can be rapidly “printed” on the
Hi-Res screen, each animated frame consists of characters “printed” at a new
position.

Animating with character generators is relatively easy; however, it does have
several disadvantages. First, the speed advantage gained by the machine
language routine is badly offset by interfacing it with Applesoft. BASIC pro-
grams need to be compiled into machine code in order to produce marginal
frame rates. Second, animation appears to be jerky due to the nature of the
character position boundaries. There are only 40 horizontal positions and 24
vertical positions for placing a character on the Hi-Res screen. Since characters
can’t be drawn in-between positions, they tend to jump 8 pixel positions ver-
tically and 7 pixel positions horizontally. Lastly, as a rule, character generator
animation lacks color. Most limit color because of the peculiarities of the Hi-
Res screen. If, for example, a green character were “printed” in column one,
it would appear violet in column two. This would require two character sets to

30

compensate for this annoying effect between even and odd columns. It is easier

to buffer the color to white.

The need to design new character sets has spawned a number of commercial

character set editors and character set generators. One versatile package is in-

cluded in the DOS TOOL KIT that is available from Apple Computer Incor-

porated. It has a program called “Animatrix” that enables you to construct

shapes consisting of a number of user-defined characters. The illustration

below shows a shape drawn on the enlarged grid, while the display in the upper
right shows which characters these represent. When the character set is attach-

ed to their character generator
(
also in this package), animated drawings or

games can be produced. They include an example of an animated game in

which a joystick-controlled frog leaps in the air to catch passing butterflies.

ANIMATRIX DRAWING

Other available character generators are HIGHER TEXT from Synergistics

Software and SCREEN MACHINE from Softape. Neither is suited for large

character animation, but HIGHER TEXT can produce very nice color text

displays.

31

HOW CHARACTER GENERATORS WORK

Character generators incorporate high speed machine language routines that
calculate the character’s position, then draws it on the screen one byte at a
time. Characters consist of eight bytes in memory, where each byte represents
the on/off positions of seven adjacent pixels. Each character is 7 pixels wide by
8 pixels deep. There are 96 characters in a set, each eight bytes in length for a
total of 768 bytes of memory.

’

The program has an index to the character set. Each character fits in a par-
ticular position within the set depending on its ASCII assigned value. The
character numeric values range from decimal 160 to 255, including both upper

case characters. When the character generator begins processing the
P

a cJTT

tat
^
ment Wlth,n the BASIC program, it reads a character, determines

its ASCII value, then indexes to the proper eight bytes in its table to obtain the
character shape bytes to be drawn to the screen. For example, the program
says to print an H, which is interpreted as the ASCII character 200. That
character is 40 characters past the tables first character value. Therefore, the H
shape begins 40 X 8 bytes into the character set storage table. Now those eight
bytes which will be plotted on the screen don’t have to represent an H. They
may have been redefined with a character editor to be a section of a much
larger shape.

$800

$900

$908

$910

00 Foo 00 00 00 00 00 00
•

•

9

•

•••••••,
GO 22 2A 3A 1A | 02 3C 00

1
08

|
8C| 14

| 92 | 3E | 22 22 00

1

1E
I

22 22
|
IE 22 22 1E 00

ASCII 160 (blank)

ASCII 192 (@)

ASCII 193 (A)

ASCII 194 (B)

Char A = 2048 + (193-1 60)*8 = 2312 ($908)

32

Most character generators use control characters to set various modes. The
Apple II lacks a true lower/upper case shift key; control characters are used for
this function. Sometimes, control characters are used to put the user in “Block
Mode”. This saves inserting numerous VTABs and HTABs when printing a
multi-character shape such as playing cards. Other control characters are often
used to clear to the end of a line or even an entire page. This facilitates erasing
the old characters before drawing new ones on the screen.

Screen animation is obtained by drawing the characters at one position, then
moving them to the next position. Unlike Apple shape tables, you don’t’ need
to XDRAW to erase characters. Instead, leading or trailing blanks are added
to help erase characters from the old string that may not be erased when draw-
ing the new string. It is equivalent to using a DRAW command, with spaces
inserted on either side of the shape. The other alternative is to erase the
character shape entirely using blanks. This method is more likely to increase
screen flicker since an extra step is involved.
The TOOL KIT character generator has one feature not found in other

packages. It has the ability to preserve background while drawing characters
A good example of this is the demo game, RIB * BIT. The character generator
stores the background picture on Hi-Res page two, and ORs the characters
against it while drawing on Hi-Res page one. This technique also facilitates
erasing the characters in their previous position. One is relieved of the task of
printing blanks to the Hi-Res screen before repositioning the character shape.

In summation, although a character generator is capable of animating sim-
ple games from BASIC for beginners, it doesn’t offer the speed, flexibility,
color, and smoothness that is required for quality arcade games. Although
character generators have their place, there are better methods presented later
in this book.

33

CHAPTER 2

LO RES GRAPHICS

The words, machine language and/or assembly language, evoke visions of
indecipherable code to the novice BASIC language programmer. The code
looks unfamiliar. But so was BASIC when it was first learned. While BASIC
has its roots in the English Language and algebraic expressions, assembly
language appears to consist of unfamiliar op codes or mnemonics that are used
in conjunction with an unfamiliar base 16 number system called hexadecimal.

It is my intent in this chapter to teach you the fundamentals of assembly
language programming by comparing it to similar code written in BASIC.
Rather than try to teach all aspects of the language, I’ll concentrate only on the
operations needed to do simple Lo-Res plotting and, later, additional opera-
tions to enable you to write a Lo-Res Breakout game.
A good assembler is needed to write assembly language programs. Although

owners of Apple II Integer BASIC machines have mini-assemblers built-in,
they don’t offer the flexibility needed to write anything other than short pro-
grams. A good assembler allows you to enter assembly language code by line
number and later edit, insert or delete particular lines. Since any line of code
can have a label in its first field, the assembler will automatically calculate the
branches or “GOTOs” to lines referenced with these labels. Also, if you wish
to store a value in a variable called “ZAP”, the assembler which assigns a
memory storage location for the variable, and will automatically furnish the
correct memory address for any subsequent store or load operations using that
variable.

Readers who already own assemblers may use the one they have. For those
of you who are new programmers, I would recommend one of two types of
assemblers. One type of assembler evolved out of the Apple Computer
organization and the Apple Puget Sound Programming Library
(CALL - A.P.P.L.E.). These are mostly co-resident assemblers, wherein both
the assembler and text editor reside in memory simultaneously. They are
marketed under names like TED II + ,

BIG MAC
, MERLIN, and TOOL

KIT. Only the TOOL KIT is the exception. It is disk-based and loads either
the assembler or text editor to memory. Its prime advantage lies in writing
larger programs; however, its disadvantage is that it is time-consuming to shift
files back and forth to the disk when testing short programs. I chose and used
BIG MAC for writing the programs for this book. The other popular assembler
that I would recommend is the LISA series by Randall Hyde. It is a co-resident
assembler with a mediocre text editor and fast assembler, but its mnemonics
are not completely compatible with the other assemblers. It also complements
Randy s Using 6502 Assembly Language” book, which I would recommend

35

reading for a more comprehensive introduction to assembly language program-
ming. However, it does not cover graphics.

BASIC ASSEMBLY LANGUAGE

The Apple II contains a central processing unit (CPU), a 6502
microprocessor. It accepts instructions to perform various operations, like tak-
ing a value and storing it somewhere in memory, adding a number to another
number located in one of its internal registers, or comparing two values. What
makes programming in assembly language rather difficult (or at least tedious)
is that it can only execute one tiny instruction at a time, and only perform its
operations in three internal registers. These three addressable registers are
known as the X register, Y register and Accumulator. Each can hold eight
binary digits called bits, which are individually valued at 0 or 1 . The eight bits,
collectively called a byte, have values ranging from 0 to 255 decimal or ($00 to
$FF in hexadecimal notation).

Essentially, the computer, which is an eight bit microprocessor, can
manipulate data whose values range from all eight bits off (00000000) to all
eight bits on (1 1 1 1 1 1 1 1). The average person has great difficulty in thinking of
values represented by 0’s and l’s. Fortunately, someone invented a number
system called hexadecimal, which is base 16 instead of binary or base 2.

Since 16 is 2 x 2 x 2 x 2, we can divide our eight bits into two four bit groups.
If you determine each of the decimal equivalents of all the combinations of base
two representations, you obtain the following table. These values range from 0
to 15 decimal. In the hexadecimal numbering system, values above 9 are
represented by the letters A - F. In order to prevent confusion between decimal
and hexadecimal numbers, hexadecimal numbers are preceded by a “$”.

BINARY
0000

0001

0010

0011

0100
0101

0110
0111

1000

1001

1010

1011

1100

1101

1110

mi

DECIMAL
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

HEXADECIMAL
$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$A
$B
$C
$D
$E
$F

36

Hexadecimal numbers are very much like decimal numbers. They can be
added and subtracted in like manner. The only difference is that instead of
having units, tens and hundreds, etc, the hexadecimal numbers have units,
sixteens and 256’s, and so forth. Each successive digit is 16 times the position to
the right instead of ten times as in our decimal system.

DECIMAL HEXADECIMAL

1 6 5 $ 1 3 A

1 HUNDRED
6 TENS

5 ONES

1- 256
3 SIXTEENS

A - ONES

1 x (100) = 100
+ 6 x (10) = 60
+ 5 x (1) = 5

1 x (256) = 256
+ 3 x (16) = 48
+ A x (1) = 10

165 DECIMAL $ 13A = 314 DECIMAL

Hexadecimal numbers are used to address the Apple II’s 48000 + memory
locations. Each group of 256 bytes ($00 - $FF) is called a page, starting with
page zero. In 48K Apples, memory is directly addressable from locations $0000
to $BFFF (0 - 49050). Locations above $BFFF are also addressable, but these
locations don’t contain RAM. These locations, from $C000 - $FFFF, either
address physical connections like the speaker and game switches at locations
$C000 — $CFFF, or address the ROM (Read Only Memory) beginning at
$D000 and extending to $FFFF. The latter area contains machine language
monitor routines and either Integer or Applesoft BASIC, depending on
whether you have an Apple II or Apple II Plus.

37

MEMORY MAP

192

b*ooo0 1
•w- n T1 HARDWARE & ROM

191

150

$9600 - $BFFF DOS

149

96

$6000 - $95FF FREE RAM

95

64

$4000 - $5FFF
HI-RES PAGE #2

OR
FREE RAM

63

32

$2000 - $3FFF HI-RES PAGE #1
OR

FREE RAM

31

12

$C00 - $1FFF FREE RAM

11

8

$800 - $BFF FREE MEMORY OR
PAGE #2 TEXT & L0 RES

7

4

$400 - $7FF PAGE #1 TEXT & L0 RES

3 $300 - $3FF MONITOR VECTOR LOCATIONS
2 $200 - $2FF GETLN INPUT BUFFER
1 $100 - $1FF SYSTEM STACK
0 $00 - $FF ZERO PAGE - SYSTEM VARIABLES

1

PAGE HEX RANGE USEAGE

The lowest eight pages of memory, locations $0000 to $07FF, are very im-
portant; programs should not be stored there. The upper four pages of this sec-

tion of memory, $0400 to $07FF, are the memory locations of the text screen
page. Storing values in these locations directly affects the text display. Page
two, $200 to $2FF, is the keyboard buffer. Inputting data from the keyboard
tends to wipe out stored data here. Page one, $100 to $1FF, is called the stack.
It is used by a special purpose register in the 6502 microprocessor for keeping
track of return addresses when calling subroutines. This scratch area for the
Stack Pointer is sometimes used for temporary register storage. Page zero, $00
to $FF, is a very special area. There are a number of zero page addressing in-

structions. These instructions are two bytes long instead of the usual three,
because they address a memory location from $00 to $FF instead of $0000 to
$BFFF. The latter takes an extra byte to address the larger addresses. Also,
these instructions execute faster. Page zero is used extensively for variable
storage by the monitor, BASIC interpreters, and DOS. Only some of these
memory locations are free for your use. You should consult the chart in the Ap-
ple Reference manual for usable locations.

When a microprocessor processes a machine language program, it keeps
track of which instruction it is executing with an internal 16 bit register called
the program counter. The program counter contains the current address of the
instruction that is being processed. When the computer finishes with an in-
struction, it sets a flag or condition in a seven bit, Program Status Word, which
is a register. For example, if you want to test if a value in the Accumulator is

equal to zero, you can compare the Accumulator to zero. If true, the zero flag
will be set and the instruction Branch Equal to Zero (BEQ) will be executed.
Other flags that can be set are the carry flag, overflow flag, and the negative
flag. A diagram of the Program Status Word is shown below.

7 6 5 4 3 2 1 0

N V B D I Z c

SIGN OVERFLOW BREAK DECIMAL INTERRUPT ZERO CARRY

PROGRAM STATUS WORD

The 6502 microprocessor accepts only machine language instructions. These
are called op-codes. When the computer encounters a $4C, it performs a
equivalent to a GOTO in BASIC. The machine language instruction $4C 00
08 tells the computer tojump to memory location $800. (Remember, addresses
require two bytes with the low order byte containing $00 and the high order
byte, $08 — in effect, the reverse order of the actual values. Unfortunately,

39

machine language is difficult to remember, so programmers invented a
substitute called Assembly language, wherein each op-code is assigned a
mnemonic such as JMP, BRK, and LDA. The above example looks like this-

JMP $0800.

If you were to type the following machine code into the monitor, you would
see how the monitor disassembler interprets the code, as in the following exam-
ple:

>CALL-151
*800 :A9 05 8D 00 09 CE 00 09 AD 00

09 C9 00 DO F6 60 < CR >

If you enter a 800L from the monitor you will see the following:

0800 A9 05
0802 8D 00 09
0805 CE 00 09
0808 AD 00 09
080B C9 00
080D DO F6
080F 60

LDA #$05
STA $0900
DEC $0900
t n a tb noonuut\

CMP #$00
BNE $0805
RTS

The disassembler translates the machine code to easier understood
mnemonics. In the first line of code, LDA is the mnemonic for Load
Accumulator. It is the instruction for the 6502 to load the Accumulator with an
immediate value -in this case, $05. The # sign signifies that it is an “im-
mediate” instruction; the ($05) is the data portion of the instruction. The STA
in line two is an “absolute” instruction. It specifies the address in memory for
storing the byte of data that is in the Accumulator.
The difference between “immediate” and “absolute” instructions is an

important point. Let us take the example LDA #$05. In this “immediate”
instruction, the computer takes the operand ($05) as a value and places it in the
Accumulator. However, with LDA $05, which is an “absolute” instruction,
the computer takes the operand as an address from which to load data in the
computer. In both cases, we get a value in the Accumulator. You can tell the
modes apart because “immediate” instructions have a # sign before the
operand.

You might wonder, what does this code do? It puts the value of 5 in memory
location $900. Line two stores it there, then the value of that memory location
is decremented by one in line three. It is then reloaded into the Accumulator to
be compared against the value zero. If it is zero it falls through to a return

-

from-subroutine and ends; but if it isn’t zero it branches back to memory loca-
tion $805. That location tells the computer to decrement the value in $900 once

40

again. The code will perform this small loop until the value in $900 becomes
zero. At that time, the test for a zero becomes true and the program returns to

whatever called it. In our case, we called the code from the monitor - thus it

returns to the monitor. Ifwe had called it from within a program, it would have
returned to the appropriate place in the code to continue the program.

Does it work? First, type 900:AA <CR> to place something in that

memory location, then type 800G <CR> from the monitor. The code will

return you back to the monitor when it finishes. Type 900 <CR> and a 00 is

returned. This is the value in memory location $900. If you have an Integer
machine that has STEP and TRACE, you can do a 800S <CR> instead,

followed by a S <CR > each time and watch the code single step. The value in

the Accumulator is the first value displayed. When it finally reaches zero the
program will reach the RTS and finish.

This program has a direct analogy to the following BASIC program:

10 X = 5

20 X = X - 1

30 IF X <> 0 THEN 20
40 RETURN

The major differences between the two programs is that in assembly
language there are no line numbers, and you have to take care of every detail.

BASIC automatically assigns the storage locations of all variables and the loca-
tion of each instruction in memory. In assembly language programming, we
have to assign the X variable to memory location $900 and have to calculate
the relative branch or GOTO so that it references the memory location $805.
This is done by branching back $F6 bytes, or -8 bytes, to the proper address.
Yet, many of these details can be greatly simplified ifwe use an assembler to do
our programming.
The same program using an assembler looks like the following:

LINE LABEL INSTRUCTION COMMENT
FIELD FIELD FIELD

0800: A9 05
0802: 8D 00 19
0805: CE 00 09
0808: AD 00 09
080B: C9 00
080D: DO F6
080E: 60

1 0RG $800
2 OBJ $6000
3 X EQU $900
4 LDA #$05
5 STA X

6 LOOP DEC X
7 LDA X
8 CMP #$00
9 BNE LOOP
10 RTS

; ASSEMBLE CODE AT $800

;X IS STORED AT $900

;X = X - 1

41

The assembler generates identical machine code, but many of the tedious
details are simplified. Once X is equated to the memory location in line 3,
references to that variable in lines 5 through 7 are handled automatically. IfX
were assigned to a different memory location because our program was
lengthened, you would only have to change line 3. Also, labels are allowed.
They act like line numbers in BASIC. Since the assembler assigns the line of
code labeled LOOP to a particular memory location, it can calculate the cor-
rect relative branch automatically when it encounters line 9 during assembly.
The ORG and OBJ in lines one and two are pseudo-opcodes, understood only
by the assembler. These do not generate machine code, but tell the assembler
where the code is to be run and stored, respectively.

Although the ORG can be specified anywhere in memory, the OBJ is
peculiar to older assemblers. The OBJ, or the place in memory where the code
that is built is stored, must not overwrite either the assembler or the text file
containing your source program.

Older assemblers, like TED II + ,
need to be told where the location is.

Default values are recommended. Newer assemblers like BIG MAC
MERLIN, and TOOL KIT don’t use OBJ pseudo-opcodes since they default
to those values automatically.

When an assembler builds its code for an ORG different from its OBJ (as in
the above example), the code has addresses and relative branches that will only
execute at the proper ORG runtime address. The assembler, however, saves
the code that is physically stored, beginning at address $6000. It will not ex-
ecute if run at that address, so that you need to load or run it at $800 using a
“,A$800” after the name of the program.
Now that you have had a taste of assembly language programming and have

seen that it isn t as bad as you thought, there are a number of fundamental
operations that must be learned. The most important operation is to move
numbers from one memory location to another. This can be accomplished by
loading a value into any one of the three internal 6502 registers, the Ac-
cumulator, X or Y registers, and storing that number somewhere in memory.A LDA (Load Accumulator) instruction can be carried out in several different
ways depending on its addressing mode. First, we can load the Accumulator
with a real hexadecimal value (LDA #$05). This is called Immediate Mode Ad-
dressing. Sometimes, we need to be able to load the Accumulator with a
variable stored in a memory location (LDA $900). This is called Absolute Ad-
dressing. The only other addressing mode which we will discuss for the time
being is the indexed addressing mode. It takes the form of LDA $900,X orLDA $900,Y depending on whether the X or Y register is used as an index. If,
for example, the X register contains #$05, then the instruction above loads the
value from location $900 + $5 or $905. This addressing mode is used primarily
for indexing into tables stored at particular memory locations.

(<

Store operations are similar to load operations. You can store a value into an
absolute” memory location, or you can store indirectly into a memory loca-

tion, offset by the value contained in either the X or Y register.

42

In summary, the table below shows the various load and store operations.

LOAD

STORE

ACCUMULATOR X REGISTER
LDA #$05
LDA $900
LDA $900,

X

LDA $900,

Y

LDX #$05

LDX $900
LDX $900,

Y

Y REGISTER
LDY #$05

LDY $900

LDY $900,

X

STA $900
STA $900,

X

STA $900,

Y

STX $900

STX $900,

Y

STY $900
STY $900,

X

Sometimes it is necessary when counting cycles or looping through code to

increment or decrement a value directly - similar to a FOR-NEXT loop in

BASIC. In assembly language, either the X and Y registers or any memory
location can be incremented or decremented. If the X register contained $FE,
then it would contain $FF when incremented. But if it contained $FF, it would
wrap around to become $00. The computer informs you by setting a zero flag

in its Program Status Register.

ACCUMULATOR X -REG Y -REG MEMORY LOCATION
INC BY 1 NOT AVAILABLE INX INY INC $900
DEC BY 1 NOT AVAILABLE DEX DEY DEC $900

Program flow can be altered, as in BASIC, with equivalent instructions that
resemble GOTO, GOSUB, and IF-THEN statements. TheJMP instruction is

equivalent to a GOTO statement in that it can go to any location in the
machine to continue executing code. JMP $AD6C instructs the computer to
continue executing code beginning at address $AD6C. The GOSUB statement
is identical to aJSR (Jump Subroutine) in machine language. When the com-
puter executes the instruction JSR $FCA8, it pushes the two-byte memory
address of the instruction onto the stack, so that when it returns from the
subroutine at $FCA8 via an RTS (ReTurn from Subroutine), it will know the
address of where to continue the program. When it returns, it pulls that return
address off the stack and increments it by one, so that it points to the next
executable instruction. The stack is like a dish dispenser. Bytes are pushed on
the stack in order and pulled off in reverse order. New bytes are added to the
top, while the rest of the bytes on the stack are pushed deeper.
The IF-THEN statement is simulated by a number of branch instructions

which test the Program Status Register for which flags are set. Flags are usually
set by compare operations. You can compare a value against the value stored
in either the Accumulator or X and Y Registers. The mnemonics are CMP,
CPX and CPY, respectively. For example,

43

LDA $900 ;L0AD ACCUMULATOR WITH VALUE AT $900
CMP #$05 ; COMPARE $5 WITH ACCUMULATOR

Different flags are set depending on the result.

Branch instructions are very similar to a JMP instruction (which is an
unconditional branch), except that only under certain circumstances will it

cause program flow to continue at a different location. For example, ifwe were
to test for that wrap-a-round case when we incremented the X- register that
contained $FF, we would want to test the Zero Flag with a Branch Equal Zero

(

) instruction, and go to some label if the condition is true.

LDX $900
INX
BEQ SKIP
RTS

SKIP LDA #$05

LOAD X REGISTER WITH VALUE IN MEMORY
INCREMENT X- REGISTER
TEST IF 0, AND IF TRUE GO TO SKIP
RETURN TO MAIN PROGRAM

This short example loads a value from the memory location into the X
register, then increments it. If wrap-a-round occurs, the test for a zero flag
causes the program tojump to a label called SKIP, and the code does not return
to the program that called it via the RTS. There are numerous tests on each of
the flags in the Program Status Register. A summary is shown below.

BCC - Branch if the carry flag is clear. C =0
BCS - Branch if the carry flag is set. C =1
BEQ- Branch if the zero flag is set Z = 1

BNE - Branch if the zero flag is clear z=o
BMI - Branch if minus N = 1

BPL - Branch if plus N =0
BVS - Branch if overflow is set V-l
BVC - Branch if overflow is clear V =0

Most assemblers offer alternative mnenomics for BCC and BCS. Since, dur-
ing comparisons, the carry flag is set when the value is equal or greater than the
value compared, BCS might be called BGE

(Branch Greater or Equal).
Likewise, BCC is equivalent to BLT

(Branch Less Than). Why use these alter-
natives? Because they are easier to remember and visualize, and they make it

clear that you are doing logical comparisons rather than testing the results of an
addition or subtraction.

44

There is one other important concept that should be understood when doing
comparisions. I implied that the subsequent branch was like a GOTO in

BASIC or like a JMP instruction in machine language. This is not entirely

true, since the range of the branch can not exceed - 126 to +129 bytes. This is

because the branch instruction is only two bytes long. The first byte is the in-

struction code and the second the relative address. It takes a two byte address
to branch to any place in memory (Except Page Zero). The JMP instruction

has the advantage that it is three bytes long. In most cases, this limitation will

not cause problems. But if a branch out of range error occurs, you must reverse
the test so that it will reach the required destination via a JMP instruction.

EXAMPLE: If BEQ SKIP is out of range then substitute the following:

BNE **+$5 or BNE A
JMP SKIP JMP SKIP

A NOP

This change causes the program to drop through to the JMP instruction if

the zero flag was set, and thenjump to location SKIP. However, if the zero flag

is not set, it will advance ahead five bytes to the instruction following theJMP.
All of the other branch instructions work in a similar manner. This gives the
equivalent of a Long Branch.

Simple addition and subtraction of unsigned numbers is easily accomplished
in machine language. All addition and subtraction must be performed one byte
at a time. Thus, large numbers or multi-byte numbers (those that exceed $FF),
must be added or subtracted one byte at a time, and the carry flag must be
accounted for. It’s actually not much different than addition of two multi-digit
long decimal numbers. Those numbers have a digit in the one's column,
another in the ten's, etc. If you add 65 to 78, you add the one's column first.

Five plus eight equals 13. The value in the one's column is 3; you then carry
the one into the tens digit before you add the two numbers in the ten's column.
Hexadecimal addition is similar. You clear the carry before you add. If the sum
of the two values exceeds $FF, the carry is set. Since you don't clear the carry
when adding the next higher byte, the resultant answer will be the sum plus the
previously computed carry, as in the following example:

EXAMPLE : +CARRY
63 F4

+ 02 + 16

66 0A
; SETS CARRY

45

The code for additions and subtractions is as follows:

ADDITIONS

CLC CLEAR CARRY
LDA #$F4 : LOAD L0 ORDER BYTE
ADC #$16 : ADD WITH CARRY
STA LOW

;
STORE L0 BYTE

LDA #$63
;
LOAD HI ORDER BYTE

ADC #$02
;
ADD WITH CARRY (NOTE DON'T CLEAR CARRY)

STA HIGH
;
STORE HI BYTE

SUBTRACTIONS

SEC
J SET CARRY FLAG

LDA #$F4
; LOAD VALUE

SBC #$16 ; SUBTRACT WITH CARRY
STA VALUE; STORE ANSWER

You should be aware that the rules for subtraction are different than for ad-
dition. The carry must be set first. This is equivalent to a borrow in subtrac-
tion. After the subtraction operation, the carry will be clear if an underflow
(borrow) occurred. The carry will be set otherwise. Setting the carry is very im-
portant, a step that many beginners forget. The results are invariably incorrect
if this step is skipped - and possibly even “random”, since the status of the
carry flag can be on or off when the subtraction operation is performed. This
can make debugging difficult.

46

LO-RES SCREEN

The Lo-Res screen occupies the same memory locations as the text page:
$400 to $7FF for page one and $800 to $BFF for page two. When the Lo-Res
graphics mode is toggled, the 1024 memory locations are presented as colored
blocks rather than ASCII characters. Each ASCII character becomes two col-

ored blocks, stacked one upon the other. Since the text page contains 24 lines of
forty characters, the Lo-Res screen shows 48 rows of blocks, 40 blocks wide.
Each block can be any one of 16 colors.

LOW - RESOLUTION GRAPHICS COLORS

DECIMAL HEX COLOR DECIMAL HEX COLOR
0 $0 BLACK 8 $8 BROWN
1 $1 MAGENTA 9 $9 ORANGE
2 $2 DARK BLUE 10 $A GREY II

3 $3 PURPLE 11 $B PINK
4 $4 DARK GREEN 12 $c LIGHT GREEN
5 $5 GREY I 13 $D YELLOW
6 $6 MEDIUM BLUE 14 $E AQUAMARINE
7 $7 LIGHT BLUE 15 $F WHITE

Since each screen memory location represents two colored blocks in Lo-Res,
each byte is divided into two equal halves called nibbles (4 bits). The value
which is in the lower nibble of the byte determines the color for the upper
block, and the higher order nibble determines the color for the lower block.
Thus, if memory location $400, which is the first position in the first row, con-
tains $D1, then the upper block is magenta and the lower block is yellow.

LOCATION $400
MAGENTA

YELLOW

VALUE
$D1

I would like to point out that the map of the text screen is not sequential in

memory. Like its big brother, the Hi-Res screen, the first 40 bytes map across
the first row

, but the second 40 bytes represent a row which is a third of the way
down the screen. The third 40 bytes consitute a row in the bottom third of the
screen. The exact order is not important at this time, because monitor
subroutines calculate the base address for any Lo-Res color plotting
automatically. To plot any Lo-Res point you need only give the monitor
subroutine located at $F800 the row and column to plot and the proper color.
The column is loaded into the Y register, the color into memory location $30,
and the row into the Accumulator. A call to $F800 will plot a Lo-Res dot to the

47

screen, and will be seen if the Lo-Res graphics display is activated first. The
dot s value is always placed into Lo-Res memory by this subroutine, even if
you are viewing Hi-Res screen memory.

I would like to interject a word of caution when inputting color values for Lo-
Res plotting subroutines. Because setting the proper color nibble depends on
whether you are plotting on an odd or even row, it is safer to put the color
desired in both low and high nibbles. To illustrate the point, let’s assume we
placed a $01 in the color register and we wanted to plot the point on row 0, col-umn 0. The plotting subroutine would use the lower order nibble $1 to plot the
magenta dot, then it would ignore the higher order nibble. However, if we
choose instead to plot at row 1 , column 0 ,

the subroutine will use $0 for the col-
or and ignore the lo order nibble. Thus, the screen would remain black. The
solution is to put the color in both nibbles. Placing $1 1 in the color register will
always plot the proper color in the above example anywhere on the Lo-Res
screen.

FUNCTION Y REG ACC. $0030 $002C $002D

$FC58 CLEAR SCREEN - - - — —

$FB40 SET GRAPHICS -- - - -- __

oo00to PLOT A POINT COLUMN ROW COLOR - -

mi9 HORIZ. LINE START
COLUMN

ROW
COLUMN

COLOR -

$F828 VERT. LINE START COLOR MM
ROW ROW

$F871 SCRN (X,Y) COLUMN ROW * - -

^ (NOTE: COLOR RETURNED IN ACC.)

It is time to get your feet wet; we’re going to plot your first few dots and lines
on the Lo-Res screen. The code that I’ll present is written on the TED II +
assembler. However, the code is simple enough to type in on the mini-
assembler if you haven’t purchased an assembler as yet.

48

ORG $6000
OBJ $6000
JSR $FB40
JSR $FC58
LDA #$66
STA $30
LDY #$05
LDA #$03
JSR $F800
LDA #$99
STA $30
LDA #$08
STA $2C
LDY #$02
LDA #$06
JSR $F819
RTS

; ASSEMBLE CODE AT $6000

;SET LO-RES GRAPHICS MODE
;CLEAR SCREEN
;SET COLOR BLUE
; STORE IN COLOR LOCATION
; COLUMN
;ROW

;PLOT POINT
;SET COLOR ORANGE
; STORE IN COLOR LOCATION
;END COLUMN
; STORE END COLUMN

; START COLUMN
;ROW
;PLOT HORIZ ROW

; RETURN TO MONITOR

The above program plots a blue dot at location X = 5, Y = 3. It then draws a
horizontal orange line from X = 2 ,Y = 6 to X = 8 ,Y = 6. The program can be
run by typing a 6000G <CR> from the monitor. If the ORG is assembled
elsewhere with another assembler type, the appropriate start. For example, if

LISA assembles your code at $800, then type 800G <CR>.
As you can see, plotting with Lo-Res graphics is relatively easy but involves

tedious details. The same code in BASIC, as listed below, would have taken a
mere five statements. Yet the machine language program will run at least

twenty times faster.

10 GR: COLOR = 6:PLOT 5,3

20 COLOR =9:HLIN 2,8 at 6

30 END

The ability to plot several horizontal lines having the same color is useful in

setting up our “Breakout” game. The code is also instructive in that it

simulates the FOR-NEXT loop in BASIC. We will need a counter which we
will appropriately call COUNTER. We will first initialize COUNTER to

zero. Since we aren’t going to begin plotting our horizontal lines at row zero

but instead at row five, we will use a variable called ROW to keep track of our
vertical row position. The object is to plot four horizontal red lines beginning at

row 5 and extending through row 8. The beginning column for each row is $5
and the ending column is $22.

As we plot each row successively, we increment our variables, COUNTER
and ROW. The variable COUNTER is then tested to see if it has reached the

value #$04. If it has, the code exits the loop. Otherwise, it branches back to

LOOPA so that it plots the next row. When it has plotted all four red lines, it

exits. The code and flow chart are shown below.

49

LOOPA

LDA
STA
LDA

#$00
COUNTER
#$05 ; START FIFTH ROW

STA
LDA

ROW
#$11 ;RED COLOR FIRST 4 ROWS

STA $30 ;COLOR STORAGE
LDA #$22 ;END COLUMN
STA
LDA
LDY

$2C
ROW
#$05 ; START COLUMN

JSR $F819 ;PLOT HORIZ LINE
INC ROW ;NEXT ROW
INC COUNTER ;COUNTER = COUNTER + 1

LDA
CMP

COUNTER
#$04 ;HAVE WE DONE ALL FOUR ROWS

BNE LOOPA ; NO ! GOTO LOOPA
RTS ; DONE

!

The “Breakout’
’
game involves the simplest animation technique available

on the Apple. We have a ball or, in Lo-Res graphics, a dot, that bounces
around the screen. It will ricochet off a moveable paddle, the walls, or any of

the two-by-two sized color bricks. Movement is accomplished by erasing the

ball at its old position and redrawing it at its new position. The ball is very

predictable. It changes direction only upon collision, and in all cases (except

contact with the paddle), simply reverses its direction. The position of contact

with the paddle determines the ball’s direction. Balls striking the left end travel

upwards and to the left at a 45 degree angle, while balls striking the inside left

travel in the same direction but at a 60 degree angle. Balls striking the paddle’s

right side travel at similar angles but to the right.

Determining where the ball struck the paddle is easy. The four block-wide
paddle is always drawn at row 35 decimal or $23, and the first block begins at

PADX, a variable controlled by the paddle. The ball’s position is always at

BX,BY
,
and it has a velocity VX,VY. By comparing the ball’s vertical posi-

tion to PADX first, and then PADX + 1, etc, when a collision is detected, the

ball’s velocity components VX and VY are reset. VY is always reset to -1 so

that the ball travels upwards. However, VX varies with which block was hit.

As we mentioned earlier, the two outside blocks would cause the ball to travel

at 45 degree angles. This would mean a VX of + 1 or - 1. The inside blocks

would cause the ball to bounce at 60 degree angles or VX at + 1/2 or - 1/2.

Incrementing the ball’s position by 1/2 is not possible in machine code. But
if the incremented value was first doubled before calculating the ball’s new
position, and the result divided by two, the same result would be obtained with
the loss of the fractional part. This doesn’t matter since the ball can only be
placed at whole number positions.

For example: BX = 6 and VY = 1/2

BX = BX + VY = 6 + 1/2 = 6 (ROUNDED).

If the numbers were doubled and the result divided by two,then

BX = 12 + 1 = 13/2 = 6 (ROUNDED).

If the doubled position is kept rather than discarded and we wished to move
the ball another 1/2 position, then

BX = 13 + 1 = 14/2 = 7.

This would result in the ball moving in the X direction every other cycle.

With VY = - 1 ,
it would travel at a 60 degree angle upwards and towards the

right

.

51

PADDLE DEFLECTOR

*Note all VX values doubled.

Multiplication and division by powers of two is easy in machine language.
7T -n

c
e
T

moniC ASL 1S USed for multiPlicat ‘on by two. The Arithmetic Shift

r"
(AS

ir)
ins^«ion shifts all of the bits in the Accumulator one position to

the left. Thus, bit 0 is shifted into bit 1, bit 1 into bit 2, etc. Bit seven is shifted
into the carry bit so that you can use the BCC and BCS instructions to test for
overflows. For example, if only bit two was on (4 decimal) and we did an ASL
the bit would be shifted to bit three (8 decimal). Thus, it is easy to multiply by
powers of two by doing repeated ASL instructions.

Conversely, division is performed by the Logical Shift Right (LSR) instruc-
tion. Bits are shifted to the right and the bit 0 is shifted into the carry This is
equivalent to dividing by two with loss of the fractional part.

52

ASL 7 6 5 4 3 2 1 0

LDA #$05
LSR
STA $900

LOAD ACCUMULATOR WITH 5

DIVIDE NUMBER BY TWO
VALUE STORED IN $900 IS 2

In order to update the ball's position, we take the ball’s old BX,BY position

in each direction and add the change in position or its directional velocity.

Negative values are converted to their two’s complement equivalent so that all

operations are simple additions. A negative one becomes a $FF, so that $FF
plus $02 = $01.

NEW POSITION = OLD POSITION + CHANGE IN POSITION

BX = BX + VX X DIRECTION
BY = BY + VY Y DIRECTION

The ball’s X position is calculated using doubled position values DBX and
doubled velocities values VX to avoid 1/2 values

Thus, DBX = DBX + VX and BX - DBX/2.

53

LDA DBX ;OLD DOUBLED X POSITION
CLC
ADC VX ;X DIRECTION VALUE
STA DBX ;THIS DOUBLED VALUE WILL RETAIN FRACTION
LSR ; DIVIDE BY 2 , WILL LOSE FRACTION
STA BX ;NEW BALL X POSITION
LDA BY ;OLD Y POSITION OF BALL
CLC
ADC VY ;ADD Y DIRECTION VELOCITY
STA BY ;NEW BALL Y POSITION

As the ball bounces around the screen, it will soon collide with one of the col-
ored 2 by 2 bricks at the top of the screen. Since these are colored blocks, colli-
sions can be detected between the ball and these blocks with the SCRN func-
tion. This monitor subroutine will return the value of the color at any position.
This test is performed before the ball is drawn to the screen, or the test becomes
meaningless at the ball s position since the ball will plot over the background
color blocks.

We will want to delete the block if a non-black
(background) color is return-

ed during the test. The brick is four times larger than our ball, so we must
delete all four blocks at once. This is a troublesome operation, since we might
have collided with any of the four color blocks that comprise the brick The
block that we hit is BX,BY. If we hit the top left block of the brick we will want
to delete block BX,BY ,BX + 1,BY

, BX + 1,BY + 1 , and BX,BY + 1. The
other three possible collisions with the brick have completely different se-
quences of blocks to be removed.

Bricks always begin in an odd row, at an odd column. A test can be made to
see if our ball is in an odd or even row, or an odd or even column. That will
determine which of four sequences of blocks to remove. An odd even test can
be done on BX using a division by two or LSR instruction. Odd values always
have a one in the bit zero position. An LSR operation shifts them to the carry
bit. Therefore, odd values set the carry. A BCC (Branch Carry Clear) test will
determine if the value is odd or even.

LDA BX
LSR
BCC EVEN

ODD JMP SKIP
EVEN NOP

; DIVIDE BY TWO
;BX IS EVEN IF CARRY IS CLEAR

; CONTINUE WIH EVEN CODE

54

Once the block is removed, the score must be incremented by the point value
for each block. In this game, yellow is worth one point, blue two points, and
red three points. The score is kept in a memory location called SUM. There
has been no attempt in this example to convert the hexadecimal value ofSUM
to a decimal value. That type of scorekeeping routine is outlined in Chapter 6.

The scorekeeping routine first checks the color of the block hit for yellow. If it

is equal to #$0D (Yellow) it will add #$01 to SUM. Otherwise, it will branch to

the label NEXT. There it encounters a test for the color blue. If the block isn’t

blue it branches to the label NEXT1. If it is blue, #$02 is added to SUM,
otherwise #$03 is added to SUM because it must be red.

55

SCORE LDA COLOR
CMP #$0D
BNE NEXT
LDA SUM
CLC
ADC #$01
STA SUM
JMP SC0RE1

NEXT LDA COLOR
CMP #$06
BNE NEXT1
LDA SUM
CLC
ADC #$02
STA SUM
JMP SC0RE1

NEXT1 LDA COLOR
CMP #$01
BNE SC0RE1
LDA SUM
CLC
ADC #$03
STA SUM

SC0RE1 JSR PRINT
CMP #$F0
BGE END

; HIT YELLOW?

;HIT BLUE?

;HIT RED?

; SUM=240 FOR ALL BLOCKS

This score will be printed in the text window below the Lo-Res graphics. We
want to print the letters SCORE followed by the value in SUM. There is a
monitor subroutine called COUT that outputs a single character to the screen
li the cursor position has been previously set, any ASCII character placed into
the Accumulator will be outputted to the screen. Since strings are usually more
than one character, the code must be looped so that each character is retrieved
in its turn, then placed on the screen by COUT. The string can be stored as a
hexadecimal table in memory beginning at a location labeled STRING Each
time we load the Accumulator, we index into the table X bytes where X is the
value m the X-Register. They call the operation LDA STRING, X .Indirect
Addressing. The X-Register begins at #$00 and is incremented after each byte
is outputted to the screen.

A test is needed to detect the end of the string. Since a general purpose print
output routine is desired for any length string up to 255 characters

,
it is best

not to restrict the test to detecting the length of the string, but to detect a
character that is never sent to the screen. The hexadecimal 00 (the reverse @sign) is rarely used and is a good choice for a test byte. When the code detects

56

this byte, it knows it has completed the string and exits the print loop. The
value of SUM is then outputted by the monitor subroutine PRBYTE, which
prints a single hexadecimal byte. The print subroutine is shown below.

PRINT LDX #$00 ; INDEX INTO STRING BEGINS AT 0
LDA #$05
STA $24 ;HTAB5
LDA #$17
JSR TABV ; VTAB23

PRINT1 LDA STRING,

X

;GET Xth ELEMENT OF STRING
BEQ DONE ; FINISHED?
JSR COUT ; PRINT LETTER
INX ;NEXT ELEMENT
JMP PRINT1 ;L00P

DONE LDA SUM
JSR PRBYTE ; OUTPUT BYTE SUM
RTS

STRING ASC "SCORE = "

HEX 00

The “Breakout”
. . i

game needs paddle control. The paddle is used both to
itially start the game by a button press, and to move the deflector back and
forth at the bottom of the screen. Button presses are the easiest to detect. There
are three paddle switches that are located at $C061 -$C063. The lowest hard-
ware location is for paddle #0. If the button is pushed, the value loaded into the
Accumulator is negative. The program can be put into an endless loop waiting
for a button press with the following code:

BUTTON LDA $C06l
BPL BUTTON

The code will only exit the loop if the button is pressed.

The paddle s output value
(0-255

) can be read by accessing a monitor
subroutine called PREAD, located at $FB1E. The paddle number is placed in-
to the X-Register and the value of the paddle is outputted to the Y-Register. It
is directly equivalent to the BASIC command PDL(O). In our case, we need the
output clipped to a value (0-31). It is first necessary to divide the value by four.
This gives a value between 0-64. This range was chosen rather than 0-32, so
that the player has better control with half the amount of paddle turning. The
value is then tested to be within that range. If it is less than $05 it is set to $05,
and if greater than $1F (decimal 31), it is set equal to $1F. This is called clipp-
ing-

We have covered all of the pertinent code that is necessary to write a
Breakout game. The only thing left is the flowchart, and that is shown

below. The complete assembled code follows.

57

DRAW COLOR TARGET BLOCKS & FIELI

BALL=5

|
INITILIZE START POSITION OF BALI

DRAW INITIAL POSITION OF BALL

DRAW INITIAL POSITION OF PADDLE—Q-- H
k

1

BUTTON PRESSED?
yes

1

y
XDRAW OLD POSITION OF PADDLE

58

59

23 27

1 ** B R E A K OUT
2 ORG $6000
3 JMP PROG
4 ROW DS 1

5 COUNTER DS 1

6 BX DS 1

7 BY DS 1

8 BBX DS 1

9 BBY DS 1

10 vx DS 1

11 VY DS 1

12 DBX DS 1

13 PDX DS 1

60

14 PADX DS
15 PRT DS
16 PLEFT DS
17 SUM DS
18 BALL DS
19 COLOR DS
20 CBALL DS
21 CPDL DS
22 PITCH DS
23 TIME DS
24 PREAD EQU
25 COUT EQU
26 TABV EQU
27 PRBYTE EQU

6017:: 20 40 FB 28 PROG JSR
601A:: 20 58 FC 29 JSR

30 *DRAW SCREEN
601D A9 88 31 LDA
601F 85 30 32 STA
6021 A9 23 33 LDA
6023 85 2C 34 STA
6025 A9 00 35 LDA
6027 AO 04 36 LDY
6029 20 19 F8 37 JSR
602C A9 27 38 LDA
602E 85 2D 39 STA
6030 A9 01 40 LDA
6032 AO 04 41 LDY
6034 20 28 F8 42 JSR
6037 A9 01 43 LDA
6039 AO 23 44 LDY
603B 20 28 F8 45 JSR
603E A9 00 46 LDA
6040 8D 04 60 47 STA
6043 A9 05 48 LDA
6045 8D 03 60 49 STA
6048 A9 11 50 LDA
604A 85 30 51 STA
604C A9 22 52 LDA
604E 85 2C 53 STA
6050 AD 03 60 54 LOOPA LDA
6053 AO 05 55 LDY
6055 20 19 F8 56 JSR
6058 EE 03 60 57 INC
605B EE 04 60 58 INC
605E AD 04 60 59 LDA
6061 C9 04 60 CMP
6063 DO EB 61 BNE
6065 A9 66 62 LDA
6067 85 30 63 STA
6069 AD 03 60 64 LOOPB LDA
606C AO 05 65 LDY
606

E

20 19 F8 66 JSR
6071 EE 03 60 67 INC
6074 EE 04 60 68 INC
6077 AD 04 60 69 LDA
607A C9 08 70 CMP
607C DO EB 71 BNE
607E A9 DD 72 LDA
6080 85 30 73 STA

1

1

1

1

1

1

1

1

1

1

$FB1E
$FDFO
$FB5B
$FDDA
$FB40 ;SET LORES GRAPHICS MODE
$FC58 ; CLEAR SCREEN

& BLOCKS
#$88 ;SET COLOR BROWN
$30
#$23 ;END COLUMN
$2C

#$00 ;TOP ROW
#$04 ; START COLUMN
$F819 ;PLOT HORIZ LINE
#$27 ;END ROW
$2D
#$01 ; START ROW
#$04 ; COLUMN
$F828 ;PLOT VERT LINE
#$01 ; START ROW
#$23 ;COLUMN
$F828 ;PLOT VERT LINE
#$00
COUNTER
#$05 ; START 5TH ROW
ROW
#$11 ;RED COLOR FIRST 4 ROWS
$30
#$22 ;END COLUMN
$2C
ROW
#$05 ; START COLUMN
$F819 ;PLOT HORIZ LINE
ROW ;NEXT ROW
COUNTER
COUNTER
#$04
LOOPA
#$66 ;BLUE COLOR NEXT 4 ROWS
$30
ROW

#$05 ; START COLUMN
$F819 ;PLOT HORIZ LINE
ROW
COUNTER
COUNTER
#$08
LOOPB
#$DD ; YELLOW COLOR
$30

61

LOOPC6082
6085
6087
608A
608D
6090
6093
6095
6097
6099
609C
609E

60A1
60A3
60A6
60A9
60AB
60AE
50B0
60B3
60B5
60B8
60BA
60BD
60BF
60C2
60C4
60C7
60C9

60CC:

60CF:
60D2:

60D4:
60D7:
60DA:
60DD:

60E0:
60E2:
60E5:
60E7:
60EA:
60EC:

60EF:
60F2:

60F4:
60F6:
60F8:
60FB:
60FE:
6101:

6104:
6106:

AD 03 60 74 LOOPC LDA ROW
AO 05 75 LDY #$05
20 r<9 F8 76 JSR $F819
EE 03 60 77 INC ROW
EE 04 60 78 INC COUNTER
AD 04 60 79 LDA COUNTER
C9 OC 80 CMP #$0C
DO EB 81 BNE LOOPC
A9 05 82 LDA #$05
8D 11 60 83 STA BALL
A9 00 84 LDA #$00
8D 10 60 85 STA SUM

86 ^INITIALIZE VARIABLES

; START COLUMN

A9 14 87 START LDA #$14
8D 05 60 88 STA BX
8D 06 60 89 STA BY
A9 28 90 LDA #$28
8D OB 60 91 STA DBX
A9 00 92 LDA #$00
8D 09 60 93 STA vx
A9 01 94 LDA #$01
8D OA 60 95 STA VY
A9 11 96 LDA #$11
8D OD 60 97 STA PADX
A9 14 98 LDA #$14
8D OE 60 99 STA PRT
A9 FF 100 LDA #$FF
8D 13 60 101 STA CBALL
A9 CC 102 LDA #$CC
8D 14 60 103 STA CPDL

; INITIAL POSITION BALL

{INITIAL VELOCITY BALL

; INITIAL PADDLE POSITION

{WHITE BALL

{GREEN PADDLE

20 C2

AD 13

85 30

104 *PRINT INITIAL SCORE
63 105 JSR PRINT

106 *DRAW INITIAL POSITIONS BALLS PADDLE
60 107 LDA CBALL

108 STA $30
AC 05 60 109
AD 06 60 110
20 00 F8 111
AD 14 60 112
85 30 113
AD OE 60 114
85 2C 115
AC OD 60 116
A9 23 117
20 19 F8 118

119
AD 61 CO 120
10 FB 121

122
123
124

125
A9 00 126
85 30 127
AC 05 60 128
AD 06 60 129
20 00 F8 130
AD OE 60 131
85 2C 132
AC OD 60 133

LDY BX {COLUMN
LDA BY {ROW
JSR $F800 {PLOT BALL
LDA CPDL
STA $30
LDA PRT
STA $2C
LDY PADX {START COLUMN
LDA #$23 {PADDLE ROW
JSR $F819 {PLOT PADDLE

*START GAME WITH BUTTON
BUTTON LDA $C061 ;NEG IF BUTTON PRESSED

BPL BUTTON
*

** M A I N PROGRAM LOOP**
*

*XDRAW OLD POSITIONS BALLS PADDLE
MAIN LDA #$00

STA $30
LDY BX
LDA BY
JSR $F800 ; XPLOT BALL
LDA PRT
STA $2C
LDY PADX

62

6109: A9 23 134
610B: 20 19 F8 135

136
610E: A2 00 137
6110: 20 IE FB 138
6113: 98 139
6114: 4A 140
6115: 4A 141
6116: C9 20 142
6118: 90 05 143
61 1A: A9 IF 144
611C: 8D 0D 60 145
61 IF: C9 05 146
6121: BO 02 147
6123: A9 05 148
6125: 8D OD 60 149
6128: 18 150
6129: 69 03 151
612B: 8D OE 60 152

LDA #$23
JSR $F819

READ PADDLE
LDX #$00
JSR PREAD
TYA
LSR
LSR
CMP #$20
BLT SKIPP
LDA #$1F
STA PADX

SKIPP CMP #$05
BGE SKIPP1
LDA #$05

SKIPP1 STA PADX
CLC
ADC #$03
STA PRT

; XPLOT PADDLE

; PADDLE 0

; PADDLE VALUE(0-255) IN Y REG
; DIVIDE BY 4

;CLIP TO (5-31)

153
612E: AD 14 60 154
6131: 85 30 155
6133: AD OE 60 156
6136: 85 2C 157
6138: AC OD 60 158
613B: A9 23 159
613D: 20 19 F8 160

161

162
6140: AD OB 60 163
6143: 18 164
6144: 6D 09 60 165
6147: 8D OB 60 166

167
614A: 4A 168
614B: 8D 05 60 169
614E: AD 06 60 170
6151: 18 171
6152: 6D OA 60 172
6155: 8D 06 60 173

174
6158: AD 06 60 175
615B: C9 23 176
615D: FO 03 177
615F: 4C B7 61 178
6162: AD OD 60 179
6165: 8D OF 60 180
6168: AD 05 60 181
616B: CD OF 60 182
616E: DO OA 183
6170: A9 FF 184
6172: 8D OA 60 185
6175: A9 FE 186
6177: 8D 09 60 187
617A: EE OF 60 188
61 7D: AD 05 60 189
6180: CD OF 60 190
6183: DO 08 191
6185: A9 FF 192
6187: 8D OA 60 193

DRAW NEW POSITION PADDLE
LDA CPDL
STA $30
LDA PRT
STA $2C
LDY PADX
LDA #$23 ; ROW

iiDn'rf ™SR $F819
; plot horiz paddle

*UPDATE POSITION BALL
NOTE ALL VX VALUES DOUBLED TO AVOID 1/2 VALUES

;OLD DOUBLED X POS VALUE

;X DIRECTION VELOCITY
.-THIS DOUBLED VALUE WILL KEEP FRACT-

;TIONAL PART OF NEW POSITION
.‘HALF VALUE WILL LOSE FRACTION
JNEW BALL X POS
;OLD Y POS

f nun unu
*TEST IF BALL HIT SIDES OR PADDLE

;ADD Y DIRECTION VELOCITY
;NEW BALL Y POSITION

BY

#$23
PAD1

LEFT
PADX
PLEFT
BX

PLEFT
SECOND
#$FF
VY

#$FE
VX

PLEFT
BX
PLEFT
THIRD
#$FF
VY

;AT PADDLE ROW?
; YES!

;VY=-1

;VX=-2

63

618A: 8D 09 60 194 STA VX VX=-1
618D: EE OF 60 195 THIRD INC PLEFT
6190: AD 05 60 196 LDA BX
6193: CD OF 60 197 CMP PLEFT
6196: DO OA 198 BNE FOURTH
6198: A9 FF 199 LDA #$FF
619A: 8D OA 60 200 STA VY ;VY=-1
619D: A9 01 201 LDA #$01
619F: 8D 09 60 202 STA VX ;VX=1
61A2: EE OF 60 203 FOURTH INC PLEFT
61A5: AD 05 60 204 LDA BX
61A8: CD OF 60 205 CMP PLEFT
61AB: DO OA 206 BNE LEFT
61AD: A9 FF 207 LDA #$FF
61AF: 8D OA 60 208 STA VY ;VY=~1
61B2: A9 02 209 LDA #$02
61B4: 8D 09 60 210 STA VX VX=2
61B7: AD 05 60 211 LEFT LDA BX
61BA: C9 06 212 CMP #$06 ;HIT LEFT SIDE?
61BC: BO OB 213 BGE RIGHT ;N0!
61BE: AD 09 60 214 LDA VX REVERSE VX
61C1: 49 FF 215 EOR #$FF COMPLEMENT
61C3: 8D 09 60 216 STA VX
61C6: EE 09 60 217 INC VX VALUE CORRECTED
61C9: AD 05 60 218 RIGHT LDA BX
61CC: C9 22 219 CMP #$22 HIT RIGHT SIDE?
6 ICE: 90 OB 220 BLT TOP NO!
61D0: AD 09 60 221 LDA VX REVERSE VX
61D3: 49 FF 222 EOR #$FF COMPLEMENT
61 D5: 8D 09 60 223 STA VX
618: EE 09 60 224 INC VX ; VALUE CORRECTED
61DB: AD 06 60 225 TOP LDA BY
61DE: C9 01 226 CMP #$01 HIT TOP?
61E0: DO OB 227 BNE BOTTOM NO!
61E2: AD OA 60 228 LDA VY REVERSE VY
61E5: 49 FF 229 EOR #$FF COMPLEMENT
61E7: 8D OA 60 230 STA VY
61EA: EE OA 60 231 INC VY VALUE CORRECTED
61ED: AD 06 60 232 BOTTOM LDA BY
61F0: C9 27 233 CMP #$27
61F2: DO 3A 234 BNE BLOCKS
61F4 : CE 11 60 235 DEC BALL
61F7: A9 FF 236 LDA #$FF BAD SOUND FOR MISSING
61F9: 8D 15 60 237 STA PITCH
61FC: 8D 16 60 238 STA TIME
61FF: 20 E9 63 239 JSR SOUND
6202: A9 FF 240 LDA #$FF SHORT DELAY
6204: 20 A8 FC 241 JSR $FCA8
6207: AD 11 60 242 LDA BALL
620A: C9 00 243 CMP #$00 : ALL BALLS GONE?
620C: DO 03 244 BNE CONT
620E: 4C DD 62 245 JMP END

246 *ERASE BALL & PADDLE
6211: A9 00 247 CONT LDA #$00
6213: 85 30 248 STA $30
6215: AC 05 60 249 LDY BX
6218: AD 06 60 250 LDA BY
62 IB: 20 00 F8 251 JSR $F800

; XPLOT BALL
621E: AD OE 60 252 LDA PRT

6221: 85 2C 253
6223: AC OD 60 254
6226: A9 23 255
6228: 20 19 F8 256
622B: 4C A1 60 257
622E: AD 06 60 258
6231: C9 11 259
6233: 90 03 260
6235: 4C C7 62 261

262
6238: AC 05 60 263
623B: AD 06 60 264
623E: 20 71 F8 265
6241: 8D 12 60 266
6244: C9 00 267
6246: DO 03 268
6248: 4C C7 62 269

270
624 B: AD 05 60 271
624E: 4A 272
624 F: 90 12 273
6251: AD 06 60 274
6254: 4A 275
6255: 90 06 276
6257: 20 DE 62 277
625A: 4C 72 62 278
625D: 20 17 63 279
6260: 4C 72 62 280
6263: AD 06 60 281
6266: 4A 282
6267: 90 06 283
6269: 20 89 63 284
626C: 4C 72 62 285
626F: 20 50 63 286

287
6272: AD OA 60 288
6275: 49 FF 289
6277: 8D OA 60 290
627A: EE OA 60 291

292
627D: AD 12 60 293
6280: C9 OD 294
6282: DO OC 295
6284: AD 10 60 296
6287: 18 297
6288: 69 01 298
628A: 8D 10 60 299
628D: 4C B3 62 300
6290: AD 12 60 301
6293: C9 06 302
6295: DO OC 303
6297: AD 10 60 304
629A: 18 305
629B: 69 02 306
629D: 8D 10 60 307
62A0: 4C B3 62 308
62A3: AD 12 60 309
62A6: C9 01 310
62A8: DO 09 311

STA $2C
LDY PADX
LDA #$23
JSR $F819

j XPLOT PADDLE
JMP START

BLOCKS LDA BY
CMP #$11 ; IN AREA OF BLOCKS?
BLT SK2

; YES

!

JMP DRAW
*TEST COLLISION WITH BLOCK VIA SCRN FUNCTION
SK2 LDY BX ; COLUMN

LDA BY ;ROW
JSR $F87

1

; SCRN (X , Y

)

STA COLOR ; RETURNS OLOR IN ACC
CMP #$00 ; IS BLACK?
BNE NBLACK
JMP DRAW

; YES

!

*FIND WHICH OF FOUR SUBBLOCKS HIT
NBLACK LDA BX

LSR ;BX/2
BCC EVEN

ODD LDA BY
LSR ;BY/2
BCC ODDEVEN

OODD JSR OODDS
JMP REV

ODDEVEN JSR ODDEVENS
JMP REV

EVEN LDA BY

LSR ;BY/2
BCC EEVEN

EVENODD JSR EVENODDS
JMP REV

EEVEN JSR EEVENS
^REVERSE VY
REV LDA VY

FOR #$FF
STA VY
INC VY

*CHECK COLOR ,S UPDATE SCORE
SCORE LDA COLOR

CMP #$0D ;HIT YELLOW?
BNE NEXT
LDA SUM
CLC
ADC #$01
STA SUM
JMP SC0RE1

NEXT LDA COLOR
CMP #$06 ;HIT BLUE?
BNE NEXT1
LDA SUM
CLC
ADC #$02
STA SUM
JMP SC0RE1

NEXT1 LDA COLOR
CMP #$01 ;HIT RED?
BNE SC0RE1

SUM62AA: AD 10 60 312
62AD: 18 313
62AE: 69 03 314
62BO: 8D 10 60 315
62B3: 20 C2 63 316
62B6: C9 F0 317
62B8: BO 23 318

319
62BA: A9 50 320
62BC: 8D 15 60 321
62BF: A9 25 322
62C1: 8D 16 60 323
62C4: 20 E9 63 324

325
62C7: AD 13 60 326
62CA: 85 30 327
62CC: AC 05 60 328
62CF: AD 06 60 329
62D2: 20 00 F8 330

331
62D5: A9 80 332
62D7: 20 A8 FC 333
62DA: 4C F4 60 334
62DD: 60 335

336
337
338
339
340

62DE: A9 00 341
62E0: 85 30 342
62E2: AD 05 60 343
62E5: 8D 07 60 344
62E8: A8 345
62E9: AD 06 60 346
62EC: 8D 08 60 347
62EF: 20 00 F8 348
62F2: EE 07 60 349
62F5: AC 07 60 350
62F8: AD 08 60 351
62FB: 20 00 F8 352
62FE: EE 08 60 353
6301: AC 07 60 354
6304: AD 08 60 355
6307: 20 00 F8 356
630A: CE 07 60 357
630D: AC 07 60 358
6310: AD 08 60 359
6313: 20 00 F8 360
6316: 60 361
6317: A9 00 362
6319: 85 30 363
63 IB: AD 05 60 364
631E: 8D 07 60 365
6321 : A8 366
6322: AD 06 60 367
6325: 8D 08 60 368
6328: 20 00 F8 369
632B: CE 08 60 370
632E: AC 07 60 371

LDA
CLC
ADC #$03
STA SUM

SC0RE1 JSR PRINT
CMP #$F0 ;SUM=240 FOR ALL BLOCKS
BGE END

"SOUND FOR HITTING BLOCK
LDA #$50
STA PITCH
LDA #$25
STA TIME
JSR SOUND

"DRAW BALL
DRAW LDA CBALL

STA $30
LDY BX ; COLUMN
LDA BY ;ROW
JSR $F800 ;PLOT BALL

DELAY
LDA #$80
JSR $FCA8 ; SHORT DELAY
JMP MAIN

END RTS
*

; RETURN TO MONITOR AT END OF GAME

** S U B R 0
*

U T I N E S **

ERASE BLOCK
*

SUBROUTINES

OODDS LDA #$00
STA $30 ; BLACK
LDA BX
STA BBX ;TEMP VALUE
TAY

; COLUMN
LDA BY ;ROW
STA BBY ;TEMP VALUE
JSR $F800 ; ERASE PT X,Y
INC BBX
LDY BBX ; COLUMN
LDA BBY ;ROW
JSR $F800 ; ERASE PT X+l.Y
INC BBY
LDY BBX .•COLUMN
LDA BBY ;ROW
JSR $F800 ; ERASE PT X+l.Y+l
DEC BBX
LDY BBX ;COLUMN
LDA BBY ;ROW
JSR $F800 : ERASE PT X.Y+1
RTS

ODDEVENS LDA #$00
STA $30 ; BLACK
LDA BX
STA BBX
TAY

; COLUMN
LDA BY ;ROW
STA BBY
JSR $F800 ; ERASE PT X,Y
DEC BBY
LDY BBX

; COLUMN

66

;ROW

; ERASE PT X,Y-1

6331: AD 08 60 372
6334: 20 00 F8 373
6337: EE 07 60 374
633A: AC 07 60 375
633D: AD 08 60 376
6340: 20 00 F8 377
6343: EE 08 60 378
6346: AC 07 60 379
6349: AD 08 60 380
634C: 20 00 F8 381
634F: 60 382
6350: A9 00 383
6352: 85 30 384
6354: AD 05 60 385
6357: 8D 07 60 386
635A: A8 387
635B: AD 06 60 388
635E: 8D 08 60 389
6361: 20 00 F8 390
6364: CE 08 60 391
6367: AC 07 60 392
636A: AD 08 60 393
636D: 20 00 F8 394
6370: CE 07 60 395
6373: AC 07 60 396
6376: AD 08 60 397
6379: 20 00 F8 398
637C: EE 08 60 399
63 7F: AC 07 60 400
6382: AD 08 60 401
6385: 20 00 F8 402
6388: 60 403

LDA BBY
JSR $F800
INC BBX
LDY BBX
LDA BBY
JSR $F800
INC BBY
LDY BBX
LDA BBY
JSR $F800
RTS

EEVENS LDA #$00
STA $30
LDA BX
STA BBX
TAY
LDA BY
STA BBY
JSR $F800
DEC BBY
LDY BBX
LDA BBY
JSR $F800
DEC BBX
LDY BBX
LDA BBY
JSR $F800
INC BBY
LDY BBX
LDA BBY
JSR $F800
RTS

; COLUMN
;ROW

; ERASE PT X+l.Y-l

; COLUMN
;ROW
; ERASE PT X+l ,

Y

; COLUMN
;ROW

; ERASE PT X,Y

:COLUMN
;ROW
;ERASE PT X,Y-1

;COLUMN
;ROW

;ERASE PT X-l.Y-l

;CLUMN

;ROW
; ERASE PT X-l.Y

6389: A9 00 404
638B: 85 30 405
638D: AD 05 60 406
6390: 8D 07 60 407
6393: A8 408
6394: AD 06 60 409
6397: 8D 08 60 410
639A : 20 00 F8 411
639D: CE 07 60 412
63A0: AC 07 60 413
63A3: AD 08 60 414
63A6: 20 00 F8 415
63A9: EE 08 60 416
63AC: AC 07 60 417
63AF: AD 08 60 418
63B2: 20 00 F8 419
63B5: EE 07 60 420
63B8: AC 07 60 421
63BB: AD 08 60 422
63BE: 20 00 F8 423
63C1 : 60 424

425
426
427

63C2: A2 00 428
63C4: A9 05 429
63C6: 85 24 430
63C8: A9 17 431

EVENODDS LDA #$00
STA $30
LDA BX
STA BBX
TAY
LDA BY
STA BBY
JSR $F800
DEC BBX
LDY BBX
LDA BBY
JSR $F800
INC BBY
LDY BBX
LDA BBY
JSR $F800
INC BBX
LDY BBX
LDA BBY
JSR $F800
RTS

*

PRINT SUBROUTINE
*

PRINT LDX #$00
LDA #$05
STA $24
LDA #$17

; COLUMN
;ROW

; ERASE PT X,Y

! COLUMN
;ROW

; ERASE PT X-l ,Y

; COLUMN
;ROW

; ERASE PT X-l.Y+l

; COLUMN
;ROW
; ERASE PT X,Y+1

;HTAB5

67

VTAB2363CA: 20 5B FB 432 JSR TABV
63CD; BD EO 63 433 PRINT1 LDA STRING,

X

63D0: F0 07 434 BEQ DONE
63D2: 20 FO FD 435 JSR COUT
63D5: E8 436 INX
63D6: 4C CD 63 437 JMP PRINT1
63D9: AD 10 60 438 DONE LDA SUM
63DC: 20 DA FD 439 JSR PRBYTE
63DF; 60 440 RTS
63E0: D3 C3 CF
63E3: D2 C5 AO
63E6: BD AO 441 STRING ASC ’’SCORE =

63E8: 00 442 HEX 00
443
444 *S0UND SUBROUTINE
445 *

63E9: AD 30 CO 446 SOUND LDA $C030
63EC: 88 447 SI DEY
63ED: DO 05 448 BNE S2
63EF: CE 16 60 449 DEC TIME
63F2: FO 09 450 BEQ SEND
63F4: CA 451 S2 DEX
63F5: DO F5 452 BNE SI

63F7: AE 15 60 453 LDX PITCH
63FA: 4C E9 63 454 JMP SOUND
63FD: 60 455 SEND RTS

—END ASSEMBLY

—

1022 BYTES

CHAPTER 3

MACHINE LANGUAGE ACCESS TO
APPLESOFT HI RES ROUTINES

The Applesoft ROM contains a full set of Hi-Res graphics routines. But Ap-
plesoft, being an interpretive language rather than a compiled language, ac-
cesses these routines rather inefficiently as far as speed is concerned. This is

because the interpreter has to determine where to go and what to do with each
tokenized BASIC instruction as it encounters it. The speed penalty for this ad-
ded overhead is considerable. The interpreter runs these routines from four to
six times slower than if they were called directly from machine language.
At first glance, it appears to be rather simple to call to graphics subroutines

located in the ROM. In retrospect, it is, provided that you understand how the
interpreter handles the data structure both internally and externally as it ex-
ecutes these graphics subroutines. Since the information has never been fully
documented, it is some help if you have the Programmer’s Aid Manual, where
a source listing of that ROM chip is quite similar to the ROM Applesoft Hi-
Res subroutines.

I’m quite reluctant at this stage to attempt an explanation of how these
routines actually work. A solid grounding both in machine language and in the
Hi-res screen’s peculiarities won’t come until much later in the book. I will,
however, discuss the data structure in regards to what you need to input, and
how you input these parameters when calling the subroutines.

There are a series of memory locations stored in zero page that specify a
point on the Hi-Res screen. Some people call these locations External Cursor
Data. They are as follows:

$E0: Lo order byte of the horizontal screen coordinate
$E1 : Hi order byte of the horizontal screen coordinate
$E2: Vertical screen coordinate
$E4: Color masking word from the color table ($F6F6-$F6FD)
$E6: Page indicator ($20 page 1, $40 for page 2).

In addition, three other memory locations hold information regarding
shape table data for the drawing subroutines:

$E7 : Scale factor for drawing shapes
$E8: Lo byte pointer to beginning of shape table
$E9: Hi byte pointer to beginning of shape table.

69

There are also a number of zero page page locations that the Hi-Res
subroutines use internally when doing the actual screen plotting of points, or
strings of points called lines. Some of these contain the memory address of the
byte to plot on the screen, while others contain the color and masking informa-
tion, so that only the correct pixel within that seven-pixel byte is turned on or
off.

$1C: The color masking byte, which is shifted for odd addresses but other
wise remains unchanged.

$26: Lo address for the leftmost byte in a particular vertical row.
$27: Hi address for the leftmost byte in a particular vertical row.
$E5: The integer part of the horizontal screen coordinate divided by

7, or the horizontal offset into row.
$30: The bit position taken from the Bit Position table.

This corresponds to remainder from horizontal coordinate divided by 7 or
which bit in the byte is to be lit.

What I should point out is that after a series of other subroutines set up the
position to plot on the screen, the actual plotting of the point is done with a five
line subroutine called PLOT located at $F45A, as in the following:

LDA $1C
EOR ($26),

Y

AND $30
EOR ($26),Y
STA ($26),Y
RTS

The internal cursor data is more important than the external cursor data if
speed is the consideration. There are internal subroutines within the ROM
that set the external cursor data to correspond with the internal data, and
several more that can manipulate the screen cursor directly. However, for plot-
ting points and drawing shapes from Apple shape tables, you need not concern
yourself with any internal workings of these subroutines. Instead, I’ve sum-
marized all of the necessary subroutines in the table below, and will
demonstrate examples using them.

70

NAME ADDRESS ACC. XREG YREG NOTES

HGR JF3E2

HGR2 $F3D8

BKGND $F3F4 COLOR
FROM
COLOR
MASK
TABLE

HCOLOR JF6F0 COLOR
0-7

HPLOT IF457 VERT HORIZ LO HORIZ HI THIS CALLS
HPOSN

HLINE IF53A HORIZ LO HORIZ HI VERT DRAWS
FROM INT
CURSOR

POS. TO PT.
IN INPUT

HPOSN $F41

1

VERT HORIZ LO HORIZ HI ALWAYS
CALL
BEFORE
DRAW

SHPTR IF730 SHAPE # SETS S1A,
$1B SHAPE
POINTERS

DRAW IF601 ROTATION $1

A

SIB

XDRAW SF65D ROTATION $1

A

$1B

Simple shapes can be plotted to the Hi-Res screen in BASIC by HPLOTting
from point to point. Their speed, in comparison to Apple shapes (vector
shapes), is rather slow. However, in machine code, HPLOTed shapes become
a viable alternative if the shape is rather large and complex. Their disadvan-
tage is that they can’t be scaled or rotated, but they are easier to plot if you
choose to place the coordinate pairs into a table.

Our first example will plot a simple triangle by accessing the Applesoft Hi-
Res ROM routines directly. It is equivalent to the following BASIC program.

71

10 HGR
20 HCOLOR = 3

30 HPLOT 100,50 TO 150,100 TO 50,100 TO 100 50
40 END

The program sets the mode to Hi-Res graphics page one, mixed text and
graphics, by calling HGR at $F3E2. The plotting color is set to white (3) by
a call to HCOLOR at $F6F0. Then, by loading the Accumulator and the X& Y registers with the correct screen coordinates, the point at 100 50 is
plotted to the screen with a call to HPLOT at $F457. Each of the triangle’s
lines are drawn by calling HLINE at $F53A. This subroutine draws a line
from the internal cursor position (last point) to the point defined by the in-
put to HLINE. Since the last point was at 100,50 and we are inputting the
coordinates 150,100

, the line is drawn between these two points. After
drawing the next two lines, the triangle is completed and the program
ends. The complete code follows.

°

™P
?
RJANT NOTE: The Programs in this chapter access the ApplesoftROM. While this is no problem to Apple II Plus owners, those of us that have

an Integer machine with an Applesoft ROM card, or Applesoft in RAM on a
16K memory board, should understand that if they enter the monitor by hit-
ting reset, they have lost Applesoft. The machine reverts to the Integer ROM
on the motherboard. If you try to restart the programs they won’t run unless
the ROMs are reconnected by a 9DBFG and you return to the monitor by a

100,50

72

1 *PLOT TRIANGLE
2 0RG $6000

6000: 20 E2 F3 3 JSR $F3E2 HGR

6003: A2 03 4 LDX #$03 C0L0R=WHITE
6005: 20 F0 F6 5 JSR $F6F0 HC0L0R

6 *PL0T FIRST PT

6008: A0 00 7 LDY #$00 H0RIZ P0S HI BYTE
600A: A2 64 8 LDX #$64 H0RIZ P0S L0 BYTE
600C: A9 32 9 LDA #$32 VERT P0S
600E: 20 57 F4 10 JSR $F457 HPLOT

11 *DRAW TO SECOND POINT
6011: A2 00 12 LDX #$00 H0RIZ P0S HI BYTE
6013: A9 96 13 LDA #$96 H0RIZ P0S L0 BYTE
6015: A0 64 14 LDY #$64 VERT POS
6017: 20 3A F5 15 JSR $F53A HLINE

16 *DRAW TO THIRD POINT
601A: A2 00 17 LDX #$00 H0RIZ POS HI BYTE
601C: A9 32 18 LDA #$32 H0RIZ POS LO BYTE
601E: A0 64 19 LDY #$64 VERT POS
6020: 20 3A F5 20 JSR $F53A HLINE

21 *DRAW TO FIRST POINT
6023: A2 00 22 LDX #$00 H0RIZ POS HI BYTE
6025: A9 64 23 LDA #$64 H0RIZ POS L0 BYTE
6027: A0 32 24 LDY #$32 VERT POS
6029: 20 3A F5 25 JSR $F53A HLINE
602C: 60 26 RTS

—END ASSEMBLY-

The HPLOT technique can be used to draw shapes of greater complexity.

Since these shapes require numerous calls to HLINE for each line segment of

the completed shape, it is best to design the code to access the coordinate pairs

from a stored table and put the drawing routine into a loop.

For the sake of simplicity, I decided to store the X-Y coordinates as two byte

pairs. This limits the range along the horizontal axis, since values greater than
255 would require using the hi byte, too. If you wanted to use the entire screen,

you would have to use three byte coordinate pairs and modify the code accor-

dingly. A test was needed to determine when all the shape’s points had been
plotted. I used an $FF as a flag for the last point. The test is on the vertical

coordinate, since Y coordinate values don’t exceed $BF. Actually, the pair’s

first byte can be anything, since it is the last byte of the pair that is the flag.

When the loop detects this flag, it skips plotting the last line segment and exits

the loop.

73

The technique for accessing elements of a shape table involves loading the
first of a pair of bytes into the Accumulator, and the second byte into the X
register before calling HLINE to draw the line segment. Each element of the
table is stored at a particular two-byte address. In our example, the very first
element is called the Oth element of the table and is located at $6044. Elements
of a table can be accessed by using a zero page indexing system called Indexed
Indirect Addressing. It takes the form LDA (SHPL.X). If the X-register were
zero.it would load a byte from an address indicated by a pair of bytes, SHPL
and SHPH stored in zero page. For example, if location $FC and $FD, which
are equivalent to SHPL and SHPH respectively, contain a #$44 and #$60 in
that order, then LDA (SHPL.X) will load a #$61 from location $6044 into the
Accumulator.

INDEXED INDIRECT ADDRESSING

LDA (SHPL.X) INDIRECT ADDRESS

SHPL

SHPH

BASE ADDRESS

As you will soon discover, there are never enough registers in the 6502. Cer-
tainly, the Accumulator and X and Y registers are not enough when all three
need to be loaded to call a subroutine, and you also need to use two of them
simultaneously for retrieving data from a table. The solution is to temporarily
store your data in a memory location. When you’re done with the table and
your registers are free, the data can be moved to the proper registers just before
calling the subroutine. The important thing is to be careful that you do not
clobber your working registers.

In the example below, the X-register must be set to zero each time the index-
ed indirect load is used to retrieve a value from the table. This is no problem
the first time through the loop, but this value for the horizontal position lo byte
eventually needs to reside in the X-register before calling HLINE. Since we

74

need to do another indirect indexed load using both the Accumulator and

X-register for the next byte, we temporarily store our data in XLOW. Ifwe in-

crement SHPL, the lo byte pointer to our shape data, it will point to the next

byte in our shape table. At this point, since we haven't disturbed the

X-register, we don't need to put zero into it to perform our next indirect index-

ed load. This second value retrieved — the vertical coordinate is transferred to

the Y-register. The horizontal hi byte is placed into the X-register and the

horizontal lo byte, which was temporarily stored at XLOW, is moved into the

Accumulator before calling the subroutine HLINE.

X

75

decimal hex

PT X Y x Y

1 69 65 45 41
2 80 52 50 34
3 106 57 6A 39
4 87 57 57 39
5 76 71 4C 47
6 88 77 58 4D
7 81 85 51 55
8 72 77 48 40
9 59 88 38 58
10 64 108 40 6C
11 50 84 32 54
12 63 72 3F 48
13 59 67 3B 43
14 58 64 3A 40
15 60 62 3C 3E
16 64 62 40 3E
17 69 65 44 41

FF FF

1

2

3
4

5

6
7

8
9

10
6001: 20 E2 F3 11
6004: A2 03 12
6006: 20 F0 F6 13
6009: A9 44 14
600B: 85 FC 15
600D: A9 60 16
600F: 85 FD 17

18
6011: A2 00 19
6013: A1 FC 20
6015: 8D 00 60 21
6018: E6 FC 22
601A: A1 FC 23
601C: AE 00 60 24
601F: AO 00 25
6021: 20 57 F4 26
6024: E6 PC 27

28

HPLOTS A BIRD SHAPE ON SCREEN ONCE
ORG $6000

XLOW DS 1

HPLOT EQU $F457
HLINE EQU $F53A
HCOLOR EQU $F6F0
HGR EQU $F3E2
SHPL EQU $FC
SHPH EQU SHPL+$1
PROGRAM

JSR HGR
LDX #$03
JSR HCOLOR
LDA #<SHAPE
STA SHPL
LDA #>SHAPE
STA SHPH

PLOT FIRST POINT
PLOT LDX #$00

LDA (SHPL.X)
STA XLOW
INC SHPL
LDA (SHPL.X)
LDX XLOW
LDY #$00
JSR HPLOT
INC SHPL

.•WHITE COLOR
jSET WHITE COLOR

*DRAW NEXT POINT

;THIS IS HOR POS LO BYTE

;NEXT BYTE IN SHAPE TABLE
.THIS IS VERT VALUE FOR PT
;HORIZ POS LO BYTE
jHORIZ POS HI BYTE

;NEXT BYTE IN TABLE

76

6026: A2 00 29 LOOP LDX #$00
6028: A1 FC 30 LDA (SHPL, X) ;H0RIZ P0S L0 BYTE
602A: 8D 00 60 31 STA XL0W
602D: E6 FC 32 INC SHPL ; NEXT BYTE IN TABLE
602F: A1 FC 33 LDA (SHPL, X) ;THIS IS VERT VALUE FOR PT
6031: C9 FF 34 CMP #$FF
6033: F0 0E 35 BEQ DONE ;IF BYTE CONTAINS 255, DONE
6035: A8 36 TAY ;VERT IN Y REG
6036: A2 00 37 LDX #$00 ;H0RIZ P0S IN HI BYTE
6038: AD 00 60 38 LDA XL0W ;H0RIZ P0S IN LO BYTE
603B: 20 3A F5 39 JSR HLINE
603E: E6 FC 40 INC SHPL ;NEXT BYTE
6040: 4C 26 60 41 JMP LOOP
6043: 60 42 DONE RTS

43
6044: 45 41 50
6047: 34 6A 39
604A: 57 39 44 SHAPE HEX 454150346A395739
604C: 4C 47 58
604F: 4D 51 55
6052: 48 4D 45 HEX 4C47584D5155484D
6054: 3B 58 40
6057: 6C 32 54
605A: 3F 48 46 HEX 3B58406C32543F48
605C: 3B 43 3A
605F: 40 3C 3E
6062: 40 3E 47 HEX 3B433A403C3E403E
6064: 44 41 FF
6067: FF 48 HEX 4441FFFF

Shape tables that cross page boundaries (256 byte sections of memory where
the hi byte is constant) can cause problems. If, for example, our table began at

$60FC instead of $6044, after incrementing four times, the lo byte would be
#$00. The program would attempt to load the byte at location $6000 instead of
the byte at location $6100. This can be prevented if a test is performed after

you increment SHPL. IfSHPL were equal to zero, it would increment SHPH;
otherwise, it would skip this step.

INC
LDA
CMP
BNE
INC

SKIP LDA

SHPL ; INCREMENT L0 BYTE
SHPL
#$00 ;IS IT 0 ?

SKIP ;N0
SHPH ;YES INCREMENT HI POINTER
(SHPL,X) ;NEXT BYTE IN TABLE

The object of this fast machine language algorithm is to enable you to

animate your shapes smoothly and quickly. While one would never attempt to

animate HPLOTed shapes in Applesoft BASIC, it is completely feasible in

machine language. Speed increases on the order of 6 to 8 times are the rule.

The code to animate our HPLOTed bird in Applesoft follows. Try it, then try
the same algorithm written in machine language. I should point out that the
speed differences can not be directly correlated, since to keep the object on the
screen longer than off, a delay loop of 7 milliseconds per frame was used. If you
remove the delay or set the value in the Accumulator to #$01 before calling the
delay subroutine at $FCA8, the speed increases to 8 times that of the Applesoft
version. However, screen flicker becomes more noticeable.

10 DIM X(20) ,Y(20)
30 FOR I = 1 TO 50
40 READ X(I) ,Y(I)
50 IF Y(I) = 255 THEN 65
60 NEXT I

65 HGR :0FF = -50:1-1
70 HC0L0R= 3
80 HPL0T X(I) + 0FF,Y(I) TO X(I + 1) + 0FF,Y(I + 1) TO X(I
+ 2) + OFF , Y (I + 2) TO X(I + 3) + 0FF,Y(I + 3) TO X(I + 4) +
OFF

, Y (I + 4) TO X(I + 5) + 0FF,Y(I + 5) TO X(I + 6) + OFF,

Y

i
1 *

v
6

t
T° + 7) + 0FF

»
Yd + 7) TO X(I + 8) + 0FF,Y(I + 8

) TO X(I + 9) + OFF, Y(I +9)
90 HPLOT X(I + 9) + OFF , Y (I + 9) TO X(I + 10) + 0FF,Y(I + 1

0) TO X(I + 11) + OFF, Y(I + 11) TO X(I + 12) + 0FF,Y(I + 12)
TO X(I + 13) + 0FF,Y(I + 13) TO X(I + 14) + 0FF,Y(I + 14) T

0 X(I + 15) + 0FF,Y(I + 15) TO X(I + 16) + 0FF,Y(I + 16)
100 HC0L0R= 4
110 HPLOT X(I) + OFF , Y (I) TO X(I + 1) + 0FF,Y(I + 1) TO X(I
+ 2) + OFF, Y(I + 2) TO X(I + 3) + 0FF,Y(I + 3) TO X(I + 4)

+ OFF, Y(I + 4) TO X(I + 5) + 0FF,Y(I + 5) TO X(I + 6) + OFF,
Y(I + 6) TO X(I + 7) + 0FF,Y(I + 7) TO X(I + 8) + 0FF,Y(I +
8) TO X(I + 9) + 0FF,Y(I + 9)
120 HPLOT X(I + 9) + OFF , Y (I + 9) TO X(I + 10) + 0FF,Y(I +
10) TO X(I + 11) + OFF , Y (I + 11) TO X(I + 12) + 0FF,Y(I + 12
) TO X(I + 13) + 0FF,Y(I + 13) TO X(I + 14) + 0FF,Y(I + 14)
TO X(I + 15) + 0FF,Y(I + 15) TO X(I + 16) + 0FF,Y(I + 16)
130 OFF = OFF + 5

'

140 IF OFF = 155 THEN OFF = - 50
150 GOTO 70
160 DATA 69,65,80,52,106,57,87,57,76,71,88,77,81,85,72,77
,59,88,64,108,50,84,63,72,59,67,58,64,60,62,64,62,69,65,255,

78

The code for the moving bird is quite similar to the stationary bird, except

that once we plot the bird, it must be erased before replotting it at a different

position. It becomes rather convenient to place the entire plotting program in a

subroutine. An offset is added to each horizontal point of the bird to position it

properly on the screen. This offset starts at - 50 or #$CE in order to position

the bird’s left-most point at X =0. The offset is incremented by five for each
additional frame and tested each time so that it doesn’t exceed 150 or #$96. If it

does, the bird’s right-most point will exceed 255 decimal. The test must be ex-

actly at 150 rather than equal or greater, because our negative numbers #$CE
and larger would also meet the test. Be careful in this kind of test. If your hex-

adecimal addition isn’t correct when choosing the test position, the number
will never meet the test conditions and therefore never reset the offset back to

the beginning position after traversing the screen’s width. One hint is to use

the monitor when adding two hexadecimal single byte numbers. For example,

the monitor command 03 + FE <CR> will return the hexadecimal value

$02 .

When alternating between drawing and erasing, the color shifts between
white and black, respectively. The pointers to the shape table must also be reset

for each plot/erase cycle because these pointers are incremented when retriev-

ing bytes within the table. The flow chart and machine code for the moving
bird follows.

79

ACROSS SCREEN

;-50 DECIMAL

; WHITE COLOR
;SET TO WHITE

; DELAY

; BLACK COLOR
;SET TO BLACK

1

2

3

4

5

6

7

8

9
10
11

6002: 20 E2 F3 12
6005: A9 CE 13
6007: 8D 01 60 14
600A : A9 7C 15
600C: 85 FC 16
600E: A9 60 17
6010: 85 FD 18
6012: A2 03 19
6014: 20 FO F6 20
6017: 20 41 60 21
601A: A9 50 22
601C: 20 A8 FC 23
601F: A9 7C 24
6021: 85 FC 25
6023: A9 60 26
6025: 85 FD 27
6027: A2 04 28
6029: 20 FO F6 29
602C: 20 41 60 30

31
602F: AD 01 60 32
6032: 18 33
6033: 69 05 34
6035: C9 96 35
6037: DO 02 36
6039: A9 CE 37
603B: 8D 01 60 38
603E: 4C OA 60 39

40
6041: A2 00 41
6043: A1 FC 42
6045: 18 43
6046: 6D 01 60 44
6049: 8D 00 60 45
604C: E6 FC 46
604E: A1 FC 47
6050: AE 00 60 48
6053: AO 00 49
6055: 20 57 F4 50
6058: E6 FC 51

52
605A: A2 00 53
605C: A1 FC 54
605E: 18 55
605F: 6D 01 60 56
6062: 8D 00 60 57
6065: E6 FC 58
6067: A1 FC 59
6069: C9 FF 60

MOVING HPLOTTED BIRD
ORG $6000

XLOW DS 1

HPLOT EQU $F457
HLINE EQU $F53A
HCOLOR EQU $F6F0
HGR EQU $F3E2
SHPL EQU $FC
SHPH EQU SHPL+$

1

OFFSETH DS
^PROGRAM

1

JSR HGR
LDA #$CE
STA OFFSETH

MAIN LDA #<SHAPE
STA SHPL
LDA #>SHAPE
STA SHPH
LDX #$03
JSR HCOLOR
JSR PLOT
LDA #$50
JSR $FCA8
LDA #<SHAPE
STA SHPL
LDA #>SHAPE
STA SHPH
LDX #$04
JSR HCOLOR
JSR PLOT

^UPDATE HORIZ OFFSET
LDA
CLC

OFFSETH

ADC #$05
CMP #$96
BNE SKIP
LDA #$CE

SKIP STA OFFSETH
JMP MAIN

PLOT FIRST POINT
PLOT LDX #$00

LDA
CLC

(SHPL,X)

ADC OFFSETH
STA XLOW
INC SHPL
LDA (SHPL , X

)

LDX XLOW
LDY #$00
JSR HPLOT
INC SHPL

DRAW NEXT POINT
LOOP LDX #$00

LDA
CLC

(SHPL,X)

ADC OFFSETH
STA XLOW
INC SHPL
LDA (SHPL, X)
CMP #$FF

; 150 DECIMAL

;OFF RT SIDE OF SCREEN

;THIS IS HOR POS LO BYTE

;NEXT BYTE IN TABLE

;HORIZ POS LO BYTE

;NEW HORIZ POS LO BYTE
;NEXT BYTE IN TABLE
;THIS IS VERT VALUE FOR PT

;NEW HORIZ POS LO BYTE
;NEXT BYTE IN SHAPE TABLE
;THIS IS VERT VALUE FOR PT
; HORIZ POS LO BYTE
; HORIZ POS HI BYTE

606B: F0 0E 61 BEQ DONE ; IF BYTE CONTAINS1 255,
606D: A8 62 TAY ; VERT IN Y REG
606E: A2 00 63 LDX #$00 ;H0RIZ P0S IN HI BYTE
6070: AD 00 60 64 LDA XLOW ;H0RIZ P0S IN L0 BYTE
6073: 20 3A F5 65 JSR HLINE
6076: E6 FC 66 INC SHPL ; NEXT BYTE

6078: 4C 5A 60 67 JMP LOOP
607B: 60 68 DONE RTS

69 *

607C: 45 41 50

607F: 34 6A 39
6082: 57 39 70 SHAPE HEX 4541 50346A395739
6084: 4C 47 58
6087: 4D 51 55
608A: 48 4D 71 HEX 4C47584D5155484D
608C: 3B 58 40
608F: 6C 32 54

6092: 3F 48 72 HEX 3B58406C32543F48
6094: 3B 43 3A

6097: 40 3C 3E
609A: 40 3E 73 HEX 3B433A403C3E403E
609C: 44 41 FF
609F: FF 74 HEX 4441FFFF

—END ASSEMBLY- 160 BYTES

APPLE SHAPE TABLES IN ANIMATION

The advantage of accessing Apple shape tables (vector shape tables) directly

from machine language results in a sixfold increase in animation speed. For

many applications and simple games, this speed increase may be sufficient. If it

isn’t, you should use raster or block shape animation.

I think that beginning machine language programmers, whose prior

experience is with Apple shapes in BASIC, should attempt the techniques in

this section before learning more complicated methods shown later in this

book.

If you were to DRAW or XDRAW a shape in BASIC, you would set the

color, scale, and rotation before doing a DRAW 1 at 10,10. The location of the

shape table would have been indicated by poking the address to locations

decimal 232 and 233. These two locations are $E8 and $E9, respectively.

However, before calling the DRAW subroutine at $F601 or XDRAW at

$F65D, the pointers to the correct shape number must be set through a

subroutine that I call SHPTR (short for shape pointer). This subroutine

located at $F730 takes the shape number, which is inputted via the X-register,

and sets the pointers to the shape in locations $1A (lo byte) and $1B (hi byte).

This subroutine is deeply linked into the Applesoft interpreter. It calls

subroutines that increment the Applesoft
4

‘Get Next Character” Routine.

Although I don’t believe that this subroutine located at $B7 will cause any pro-

81

blems, before you clobber anything, I would pay attention to the chart of
available zero page locations in the Apple Reference Manual. Don’t touch the

i«<fn

l

?D^rc
S

f
d APPles°ft- You can 3180 disconnect that routine by placing a

#$60 (RTS) in location $B7 (its first location), but be sure to put the original
value, #$AD, back when you’re done, or you will hang the computer when it
returns the Applesoft prompt, and doesn’t understand anything that you type.
In short, don’t make the change unless you think it is causing you grief.

The second thing that must be set before calling the DRAW subroutine is
the internal cursor position, or where you want to plot your shape. This is easi-
ly accomplished with the HPOSN subroutine at $F411. Once the horizontal
and vertical locations are inputted, the subroutine sets locations $26, $27, $30
and $E5 to begin plotting. When you finally call the DRAW or XDRAW
subroutine, the only inputs that are required are the rotation value in the Ac-
cumulator and the pointers to the correct shape that are stored at $1A and $1B
in the X and Y registers. It may sound complicated but if you examine the
following code, you will see that it is relatively straight-forward. The following
routine XDRAWs two shapes. The first, a square, is plotted at X = 64, Y = 64,
and the second shape, a cross, is plotted at X = 128, Y =50. The scale is 4.

’

1 *PLOTS TWO APPLE SHAPE TABLE SHAPES
2 0RG $6000
3 HGR EQU $F3E2
4 HC0L0R EQU $F6F0
5 HPOSN EQU $F411
6 XDRAW EQU $F65D
7 SHPTR EQU $F730

6000: 20 E2 F3 8 JSR HGR
6003: A9 00 9 LDA #$00
6005: 85 E8 10 STA $E8 jLO BYTE OF SHAPE TABLE
6007: A9 08 11 LDA #$08
6009: 85 E9 12 STA $E9 ; HI BYTE OF SHAPE TABLE
600B: A2 03 13 LDX #$03 ; WHITE
600D: 20 F0 F6 14 JSR HC0L0R
6010: A9 02 15 LDA #$02
6012: 85 E7 16 STA $E7 ; SCALE
6014: A2 01 17 LDX #$01 ; SHAPE #1
6016: 20 30 F7 18 JSR SHPTR ;SET UP POINTER TO 1ST SHAPE
6019: A2 40 19 LDX #$40 ;H0R L0
601B: A0 00 20 LDY #$00 ;H0R HI
601D: A9 40 21 LDA #$40 ;VERT
601F: 20 11 F4 22 JSR HPOSN
6022: A6 1A 23 LDX $1A ;L0 BYTE SHAPE ADDRESS
6024: A4 IB 24 LDY $1B ;HI BYTE SHAPE ADDRESS
6026: A9 00 25 LDA #$00 ;R0T
6028: 20 5D F6 26 JSR XDRAW

27 PLOT SECOND SHAPE
602B: A2 02 28 LDX #$02 ; SHAPE #2
602D: 20 30 F7 29 JSR SHPTR ;SET UP POINTER TO 2ND SHAPEOUJU: A2 80 30 LDX #$80 ;H0R L0
6032: A0 00 31 LDY #$00 ;H0R HI
6034: A9 32 32 LDA #$32 ;VERT

82

6036: 20 11 F4 33 JSR HPOSN
6039: A6 1A 34 LDX $1A ;L0 BYTE SHAPE ADDRESS

603B: A4 IB 35 LDY $1B ;HI BYTE SHAPE ADDRESS
603D: A9 00 36 LDA #$00 ;R0T

603F: 20 5D F6 37 JSR XDRAW
6042: 60 38 RTS

—END ASSEMBLY— 67 BYTES

Animating a shape is simple. You plot it once, erase it, move it to a new posi-

tion, and then replot it at its new position. The procedure is accomplished via a

loop. There is very little to say about the method. It is the same in Applesoft. I

think the only thing you should be aware of is that HPOSN doesn’t need to be

called twice, since the erase is done at the same screen position as the

XDRAW. In the example, shape #2 moves horizontally to the right, while

shape #1 is stationary. The move routine checks for wrap-a-round at X * #$FF
as it moves the shape across the screen. The flow chart and code follows.

SHAPE #1 SHAPE #2

=£=> SHAPE @ $800

SHAPE

6001:
6003:
6006:
6009:
600B:
600D:
600F:
6011:
6013:
6016:
6018:
601A:
601C:
601F:
6021:
6023:
6025:
6028:
602A:
602C:
602E:

6031:
6033:
6036:
6039:
603B:
603D:
6040:
6042:
6044:
6046:
6049:
604B:
604E:

6050:

6053:
6055:

TABLE: 02 00

TWO
SHAPES

06 00 09 00

OFFSET OFFSET
TO TO

SHAPE SHAPE
#1 #2

2C 3E 00

SHAPE
#1

2C 2E 3E 3E 3C 2C 00

SHAPE #2

1

2

3

4

5

6

7

8
A9 05 9
8D 00 60 10
20 E2 F3 11

A9 00 12
85 E8 13
A9 08 14
85 E9 15
A2 03 16
20 FO F6 17
A9 04 18
85 E7 19
A2 01 20
20 30 F7 21
A2 40 22
AO 00 23
A9 50 24
20 11 F4 25
A6 1A 26
A4 IB 27
A9 00 28
20 5D F6 29

30
A2 02 31
20 30 F7 32
AE 00 60 33
AO 00 34
A9 32 35
20 11 F4 36
A6 1A 37
A4 IB 38
A9 00 39
20 5D F6 40
A9 50 41
20 A8 FC 42
A2 02 43
20 30 F7 44

45

46
A6 1A 47
A4 IB 48

*M0VES APPLE SHAPE TABLE SHAPE ACROSS SCREEN
ORG $6000

HGR EQU $F3E2
HCOLOR EQU $F6F0
HPOSN EQU $F411
XDRAW EQU $F65D
SHPTR EQU $F730
XLOW DS 1

LDA #$05
STA XLOW
JSR HGR
LDA #$00
STA $E8 ;L0 BYTE OF SHAPE TABLE
LDA #$08
STA $E9 ;HI BYTE OF SHAPE TABLE
LDX #$03 ; WHITE
JSR HCOLOR
LDA #$04
STA $E7 ; SCALE
LDX #$01 ; SHAPE #1
JSR SHPTR .SET UP POINTER TO 1ST SHAPE
LDX #$40 ;HORIZ POS LO BYTE
LDY #$00 ;HORIZ POS HI BYTE
LDA #$50 ;VERT POS
JSR HPOSN
LDX $1A ;L0 BYTE SHAPE ADDRESS
LDY $ IB ;HI BYTE SHAPE ADDRESS
LDA #$00 ;ROT
JSR XDRAW

PLOT SECOND SHAPE
LOOP LDX #$02

; SHAPE #2
JSR SHPTR ;SET UP POINTER TO 2ND SHAPE
LDX XLOW ;HOR POS LO BYTE
LDY #$00 ;HOR POS HI BYTE
LDA #$32 ;VERT POS
JSR HPOSN
LDX $1A ;L0 BYTE SHAPE ADDRESS
LDY $1B ; HI BYTE SHAPE ADDRESS
LDA #$00 ;ROT
JSR XDRAW ;DRAW SHAPE #2
LDA #$50
JSR $FCA8

; DELAY
LDX #$02 ; SHAPE #2
JSR SHPTR

DON'T HAVE TO DO HPOSN BEFORE ERASE
BECAUSE POSITION HASN'T CHANGED

LDX $1A ;L0 BYTE SHAPE ADDRESS
LDY $1B ;HI BYTE SHAPE ADDRESS

84

6057: A9 00 49 LDA #$00 ;ROT

6059: 20 5D F6 50 JSR XDRAW ;ERASE SHAPE #2

51 *M0VE SHAPE TO NEW POSITION
605C: AD 00 60 52 LDA XLOW
605F: 18 53 CLC
6060: 69 05 54 ADC #$05
6062: C9 FF 55 CMP #$FF
6064: DO 02 56 BNE SKIP
6066: A9 OA 57 LDA #$0A
6068: 8D 00 60 58 SKIP STA XLOW

606B: 4C 31 60 59 JMP LOOP

85

CHAPTER 4

HI RES SCREEN ARCHITECTURE

The Apple II has two Hi-Res graphics screens, a primary and a secondary,

each with a resolution of 280 dots horizontally (columns) and 192 dots or lines

vertically. This gives an effective screen resolution of 53,760 picture elements

or pixels per screen.

The large number of pixels presented a dilemma to the Apple II designers.

Using one memory location for each dot would far outstrip the Apple’s 48K
memory; besides, they wanted to have two screens. Their solution was to

divide the screen horizontally into 40 groups of 7 pixels. Each memory location

would represent information for seven adjacent pixels. This lowered the

memory requirement to 7680 bytes per screen. Since it was easier to work in

8K blocks of memory, this left an unused 512 bytes of memory per page.

In 1977, when memory chips were expensive, most Apple II computers were

sold with only 16K of memory. With various monitor areas, zero page, the

stack, and the text page using the first 2K (2048) bytes of memory, it seemed
logical to place Hi-Res graphics screen # one at the upper end ofmemory, loca-

tions 8192 to 16383 ($2000- $3FFF). Screen # two of Hi-Res graphics was plac-

ed in the 8K block of memory just beyond locations 16384 to 24575 ($4000

-$5FFF). It was usable by owners who purchased extra memory. Both of these

screen’s locations are hardwired into the machine and, unfortunately, are not

relocatable. In those days, before DOS and Applesoft made their debut, In-

teger BASIC programmers whose machines contained 48K of memory could

start their program at the top of memory and write 32K of code.

Today, Applesoft programmers face the dilemma of where to place their pro-

grams without overwriting the information stored in the Hi-Res screen areas.

Since Applesoft loads a program immediately above the text screen which

begins at $800 or 2048 decimal, only small programs fit, if they are using Hi-

Res graphics commands. The solution is to set the Applesoft pointers so that

the program loads above the Hi-Res screen. Unfortunately, you waste the 6K
of usable memory between the operating system and the beginning of Hi-Res
screen one. In retrospect, what seemed to be a logical choice in 1977 is cumber-

some today.

The Apple’s Hi-Res screen is considered memory-mapped. If you were to

change the values of the first 40 bytes of screen memory so that each turned on
all 7 pixels, then the screen would display a solid white line at the top. Chang-
ing any particular byte in Hi-Res memory directly affects the resultant picture.

Any byte in screen memory consists of a sequence of eight individual bits If
a bit is on, it has a value of 1 ;

if it is off, it has a value of 0. This on-off system of
numbers is called “Binary”. Binary numbers, represented by strings of 0’s
and 1 s, have their least significant numbers starting at the right, as shown:

128 64 32 16 8 4 2 1

° 0 0 00001 =$01
Each successive move of a bit to the left results in the value of the byte beine

multiplied by two. 5

128 64 32 16 8 4 2 1

0 0 0 00010 = $02

Eventually, the on bit would be shifted to the far left with a value of $80 or
128 decimal.

Th
f
H^eS screen

’

s convention is in reverse. Pixel values increase from left
to right. This can be verified by poking values into the primary screen’s first

Ration, $2000. To do this it, is best to enter the monitor with a
<JALL -151 from BASIC. Hi-Res graphics with mixed text can be invoked
with the following commands:

*C050 <CR> SET GRAPHICS MODE
*C053 <CR> SET MIXED TEXT AND GRAPHICS
*C057 <CR> SET HI-RES GRAPHICS

Most likely, the screen is not clear. Although an HGR from Applesoft would
clear it before entering the monitor, you should learn to perform this operation
from the monitor. Typing a 2000:00 <CR > will place a zero or no lit pixels in
the first screen location. Doing the following memory move shifts the 0 to all
other locations in a cascade effect on Hi-Res screen page one:

*2001<2000.3FFFM <CR>

If you enter 2000:01 <CR>, a single dot appears at the top left. If you
enter 2000:02 <CR>, the dot moves one position to the right. A 2000:04<CR> moves it right once again. Since seven dots are controlled by one byte,
you can do this seven times. The value $40 shifts it to the seventh position. If
you shift the dot one extra time with the value $80, nothing happens. This
eighth bit position doesn’t activate any pixels.

88

PIXEL POSITIONS BINARY

128 64 32 16 8 4 2 1

You can see from the diagram that 2000:07 turns on the first three pixels and
either 2000:7F (127) or 2000:FF (255) turns on all seven dots. As you shall see
shortly, the eight bit, the high bit or most significant bit, is used for color con-
trol. While it is not important to use the hi bit in black and white graphics, it

does explain why there is a WHITE1 and WHITE2, as well as a BLACK 1 and
BLACK2. The difference between WHITE 1 and WHITE2 is whether or not
the hi bit is set.

Those using a color TV as a monitor will notice that some of the lit pixels are
a violet like color (magenta) while others are green. The Apple II’s designers

89

alternated the colors every other column. The leftmost column in any row
always starts with violet if the high bit is off, followed by green in the next col-
umn. Thus, there are 140 violet-green pairs in any row. Since the leftmost col-
umn is column 0, violet pixels are always in even columns, (i.e., 0,2,4 ... 278).
Conversely, green pixels are always in odd columns (i.e. 1,3,5 ... 279).

There is a logical reason for alternating the Apple’s colors from column to
column. The pairs of colors are related to the square wave pulses in respect to
the colorburst reference signal in television receivers. If the Apple sends a pulse
that corresponds with the peak of the color signal, you get one color; if the pulse
corresponds to the low point of the color signal, you get the complementary col-
or. The Apple can send a pulse shifted 1/4 cycle (in between). That generates
two other complementary colors, also in adjacent pairs. I should note that this
arrangement is completely independent of the physical locations of the colored
phosphors on the television picture tube.

HI- BIT OFF (0)

V GEGD0[00 G 00 V GHI
$2000

0TH BYTE (EVEN)
$2001

1ST BYTE (ODD)

When the hi-bit is set in any byte, the pixel colors shift to blue (cyan) and
orange.

HI- BIT ON (1)

Ll0 B 000 B 0 B 0 B

$2000
0TH BYTE (EVEN)

0
$2001

1ST BYTE (ODD)

When color is considered, there are three primary colors; green, blue and
red. Each primary color has a complement. These are magenta (violet),

yellow, and cyan (blue) respectively. If a primary color plus its complement are
projected on a screen, the result is white, as shown:

PRIMARY COLOR
GREEN +
BLUE +
RED +

SECONDARY COLOR
MAGENTA (VIOLET) = WHITE
YELLOW = WHITE
CYAN (LIGHT BLUE) = WHITE

What happens on a color monitor is quite similar. If only the first pixel is lit,

you get a violet dot. If only the second pixel is lit, you get a green dot. If the
first and second pixels are lit, the colors cancel each other and you get an
elongated white dot, which is actually two dots wide. The same is true with the
blue-orange pairs, except the hi bit is set.

If you want to draw a solid line of one color over the length of the byte, you
must turn on the correct sequence of bits.

90

V/B G/O V/B G/O V/B G/O V/B HI-BIT

OPT $00 or $80 BLACK

• • • • $55 VIOLET

• • • $2A GREEN

• • • • • $D5 BLUE

• • • • $AA ORANGE

• • • • • • • OPT $7F or $FF WHITE

1 2 4 8 16 32 64 128 VALUE (DECIMAL)

EVEN BYTE

One of the first things you notice, is that although violet and green pixels can
be mixed in the same byte, violet and orange pixels can't. The hi-bit is either

on or off. You must settle for combinations of violet and green, or blue and
orange.

Applesoft users might recall some of the color problems they have en-

countered in the past. If you were plotting an orange horizontal line starting at

column 0 that extended some 20 pixels across the screen and then attempted to

plot a white line vertically in column 0 that crossed that orange line, the first

few pixels would suddenly turn green. This is because the white color chosen,

WHITE1, turned the hi bit off.

The unfortunate result in choosing seven pixels per byte is that the starting

color of every other byte alternates. The even bytes start with violet, while the

odd bytes start with green. If you were to poke a $55 into location $2000, you
would get a violet line. But if you poked $55 into location $2001

,
you would get

a green line, as indicated below:

$55 @ location $2000 $55 @ location $2001

91

In order to correct this effect, the pixels in the second byte would have to be
shifted over one position so that the value of $2A would produce violet, as
shown below. We will continue this discussion later, when we discuss shape
tables.

V G V G V G V G V G V G V G
• — • • —

t

T
$55 @ location $2000 $2A @ $2001

The following table lists the values needed to display solid colored lines:

COLOR EVEN
OFFSET

ODD
OFFSET

VIOLET $55 $2A
GREEN $2A $55
BLUE $D5 $AA
ORANGE $AA $D5
WHITE $7F $7F

$FF $FF
BLACK $00 $00

$80 $80

It is an understatement to say that if you were to map the sequential memory
locations of the Hi-Res display, they would not map row by row down the
screen as you would expect the television’s raster scan to plot these pixels. To
illustrate this point, let’s plot white line segments on a screen by poking a $FF
or decimal 255 into each sequential byte of the Hi-Res page one screen
memory.

10 HGR : POKE -16302,0
20 FOR I = 8092 TO 16384
30 POKE 1,255

40 NEXT I

50 END

As you would expect, the computer plotted the first 40 bytes across row 0,
but the next 40 bytes appeared 1/3 of the screen below on line 64. The third
group of 40 bytes appeared 64 rows below that in the bottom third of the

screen. You would then expect the 4th line to plot directly below line 0 but no,

it appears as line eight. Soon the whole display fills up first by thirds, then in

groups eight lines apart. If the plotting is stopped with a control C when the

screen is half filled, you will notice that there are 24 groups of eight lines.

Perhaps the most frequently asked question about the Hi-Res screen is: Why
would the designers make programming the screen so difficult? In 1977, com-
puter components were much more expensive. In an effort to produce a com-
puter for a mere $1200, several short cuts were taken in the video circuits. Two
OR gates were saved by incorporating this strange interlacing with the televi-

sion’s raster scan.

If you look at the memory addresses for the beginning of each of the 192

screen lines, you begin to detect a pattern. The difference in base addresses

between any two lines in one of the 24 subgroups is + 1024 bytes, or $400. The
differences between each subgroup in each third of the screen is +128 bytes.

And finally, the difference between lines between each third section is +40
bytes.

93

LINE ADDRESS

A formula can be derived from the preceding such that, given any line

number, the starting memory address for that line can be found. IfY is the line

number from 0 to 191, then the section of the screen that the line is in is A =

INT(Y/64). To find which subsection the line is in, use B = INT(D/8), where
D = Y — 64 j|eA. And to find which line Y is on within the subsection, use C
-D-8*B.

94

Memory Location = 8192*SN + 1024*C + 128*B + 40*A

where SN = HI-RES PAGE # (1-2).

Thus, if Y =93 then A = INT (93/64) = 1

D = 93-64 = 29

B = INT (29/8) = 3

C = 29- 8*3 = 5

If SN =1 then

memory Location = 8192 + 1024*5 + 128*3 + 40*5 = 13796.

An assembly language implementation of this algorithm is shown below.

1 MEMORY ADDRESS FOR START OF SCREEN LINE
2 ORG $6000
3 Y DS 1

4 A DS 1

5 D DS 1

6 B DS 1

7 C DS 1

8 TEMP DS 1

9 SN DS 1

10 WORKL DS 1

11 WORKH DS 1

12 HIRES

L

EQU $01
13 HIRESH EQU HIRESH+$01

6009: AD 00 60 14 START LDA Y ;Y=LINE #

600C: 4A 15 LSR ; DIVIDE BY 32
600D: 4A 16 LSR
600E: 4A 17 LSR
600F: 4A 18 LSR
6010: 4A 19 LSR
6011: 8D 01 60 20 STA A
6014: 0A 21 ASL ; MULTIPLY BY 64
6015: 0A 22 ASL
6016: 0A 23 ASL
6017: 0A 24 ASL
6018: 0A 25 ASL
6019: 8D 05 60 26 STA TEMP ; TEMP-64*A
601C: AD 00 60 27 LDA Y

601F: 38 28 SEC ;SET CARRY TO SUBTRACT
6020: ED 05 60 29 SBC TEMP
6023: 8D 02 60 30 STA D ; D=Y-(64*A)
6026: 4A 31 LSR ; COMPUTE D/8
6027: 4A 32 LSR
6028: 4A 33 LSR
6029: 8D 03 60 34 STA B ; B=INT(D/8)
602C: 0A 35 ASL ; COMPUTE 8*B
602D: 0A 36 ASL
602E: 0A 37 ASL
602F: 8D 05 60 38 STA TEMP ; TEMP=8*B
6032: AD 02 60 39 LDA D

6035: 38 40 SEC ;SET CARRY
6036: ED 05 60 41 SBC TEMP ; SUBTRACT TEMP
6039: 8D 04 60 42 STA C ; OD-(8*B)

95

603C: A9 00 43 LDA #$00 ; CLEAR WORKING REGISTER
603E: 8D 07 60 44 STA WORKL
6041: 8D 08 60 45 STA WORKH
6044: AD 06 60 46 LDA SN ;L0AD SCREEN #

6047: 0A 47 ASL ;MULT BY 32

6048: 0A 48 ASL
6049: 0A 49 ASL
604A: 0A 50 ASL
604B: 0A 51 ASL

604C: 8D 08 60 52 STA WORKH ; STORE IN HIGH ORDER
604F: AD 04 60 53 LDA C ; LOAD C

6052: 0A 54 ASL MULTIPLY BY 4

6053: 0A 55 ASL
6054: 6D 08 60 56 ADC WORKH ADD TO PREVIOUS HI ORDER

6057: 8D 08 60 57 STA WORKH STORE BACK IN HI ORDER
605A: AE 03 60 58 LDX B RECALL B

605D: E8 59 CONT INX

605E: CA 60 DEX

605F: F0 14 61 BEQ SKIPO CHECK FOR B=0

6061: CA 62 DEX

6062: F0 OC 63 BEQ SKIP1 CHECK FOR B=1

6064: CA 64 DEX

6065: A9 01 65 LDA #$01 ; ADD 1 TO HIGH ORDER

6067: 6D 08 60 66 ADC WORKH
606A: 8D 08 60 67 STA WORKH

606D: 4C 5D 60 68 JMP CONT CONTINUE COUNTING

6070: A9 80 69 SKIP1 LDA #$80 LOAD ACC WITH 128

6072: 8D 07 60 70 STA WORKL ADD TO LOW ORDER

6075: AD 01 60 71 SKIPO LDA A RECALL A

6078: OA 72 ASL MULTIPLY BY 32

6079: OA 73 ASL
607A: OA 74 ASL
607B: OA 75 ASL

607C: OA 76 ASL
607D: 6D 07 60 77 ADC WORKL ADD TO LOW ORDER

6080: 8D 07 60 78 STA WORKL
;
STORE BACK IN LOW ORDER

6083: AD 01 60 79 LDA A RECALL A

6086: OA 80 ASL MULTIPLY BY 8

6087; OA 81 ASL
6088: OA 82 ASL
6089: 6D 07 60 83 ADC WORKL

;
ADD TO LO ORDER

608C: 8D 07 60 84 STA WORKL

608F: AD 08 60 85 LDA WORKH ; MOVE RESULTS TO ZERO PAGE

6092: 8D OA 60 86 STA HIRESH

6095: AD 07 60 87 LDA WORKL
6098: 85 01 88 STA HIRESL
609A: 60 89 RTS

—END ASSEMBLY—

This implementation is rather lengthy in that it takes 79 instructions. It was
chosen more for its clarity rather than for its speed. Notice that the multiplica-

tions are tricky, and that 40 ^ A is split into two easier multiplications,

(8 +32) 5jc A. A much faster algorithm, taking only 24 instructions to calculate

the screen position for the Yth line, and an additional 18 instructions for the X

offset, is listed in the Programmer’s Aid Chip at $D02E under the label

HPOSN. It is also listed under HPOSN in the Applesoft ROM at $F41 1 . The
Y coordinate is placed in the Accumulator, the lo byte of the X coordinate in

the X- register, and the hi byte in the Y- register. The screen position is return-
ed in HBASL and HBASH in zero page locations $26 and $27, respectively.

HMASK is stored in $30.

I would like to make the point that even 24 instructions is far too many if you
are doing fast screen animation. Consider the problem of simply plotting a
moving star background for your space game. Twenty stars are scattered about
the screen. It takes 480 instructions just to locate the starting memory locations

for each line where the star is to be plotted. This doesn’t even consider the
algorithm needed to decide which pixel in which of 40 bytes on the line needs to

be activated. Clearly, a much faster method must be devised. That method is

called Table Lookup, and it will be thoroughly discussed in the next chapter.
The X coordinate calculation is much clearer, since the 40 bytes in each line

are stored sequentially in memory. Recalling that there are 7 bits per byte
times 40 bytes per line gives us 280 bits per line.

Given X, the byte offset is

E = INT (X/7).

and the position within the byte is

F = X - 7*E

For example, if the X coordinate is 152

E = INT (152/7) = 21 and F = 152-7*21 =5.

So, for the screen coordinate
(152,93), the memory

location is 13896 + 21 = 13917, the 5th bit activated.

While the formulas for finding the proper byte and bit positions for the X
direction are rather simple; dividing by seven normally requires a complicated
divide subroutine. Again, speed is a problem. Although I’ll present a complex
subroutine below to accomplish the job, it is much faster and simpler to resort
to Table Lookup algorithms. Still, it is a matter of trade-offs, using speed ver-
sus memory. The tables require 384 bytes plus some code; the subroutine re-
quires only the code.

The subroutine below accepts the X coordinate as a hexadecimal value in the
A and X registers. The X register contains the hi byte value. It returns the
horizontal byte offset in the Y register and the bit position within that byte in
the Accumulator. The theory behind the algorithm is rather simple, but the im-
plementation is complicated because to divide the X position (0-279) by 7 to
obtain the horizontal offset is tedious in machine language, in addition to being

97

complicated by the use of a double precision X value (X values >255 require

two bytes).

The division is accomplished by successive subtraction. The idea is subtract

140 to find which half of the screen the point lies, then narrow it to which
quarter of the screen. When we have located the position within four bytes,

seven is subtracted successively until a zero is crossed. The remainder is the bit

position within that screen byte. The hexadecimal plotting value is returned

from a table.

XCOR LDY #$00
DEX ;TEST IF X COORDINATE >255. X COORDINATE

; WOULD CONTAIN A ONE IF TRUE
BNZ XC0R2 ;TEST FOR SPECIAL CASE
SUB #$FC ; SUBTRACTS LARGEST MULTIPLE OF 7 IN 255
LDY #$24 ;SET PROVISIONAL QUOTIENT
BNZ XG0R8

XC0R2 SEC
SBC #$8C ;LEFT OR RIGHT HALF SCREEN?
BCC XC0R3
LDY #$14 ; RIGHT HALF, SET QUOTIENT
BNZ XC0R4

XC0R3 ADC #$8C
XC0R4 SEC

SBC #$46 ; WHICH QUARTER OF SCREEN
BCS XC0R5
ADC #$46
JMP XC0R6 ;SKIP TO 8THS STAGE

XC0R5 PHA ;SAVE ACC
TYA ;GET QUOTIENT
CLC
ADC #$0A ; INCREMENT FOR QUARTER
TAY
PLA

XC0R6 SEC
SBC #$23 ; WHICH 8TH OF SCREEN?
BCS XC0R7
CLC
ADC #$23 ; RESTORE DIVIDEND
JMP XC0R8

XC0R7 PHA
TYA
CLC
ADC #$05 ; INCREMENT FOR EIGHTS
TAY ; RESTORE QUOTIENT

98

PLA
XC0R8 SEC

SBC
BCC.

INY
BNZ

XC0R9 CLC
ADC
TAX
LDA
RTS

BITS HEX

#$07 ;NOW KEEP SUBTRACTING 7

XC0R9 ; UNTIL ZERO IS CROSSED

XC0R8

#$07 ; RESTORE TO GET REMAINDER

BITS, X;GET BIT FROM TABLE

01 02 04 08 10 20 40 ;BIT POSITION TABLE

To complete the discussion of the Hi-Res screen’s architecture, I’d like to
mention what happened to the 512 unused bytes in Hi-Res screen memory. Se-
quential memory is plotted in lines separated into thirds on the screen. The top
line of the bottom third (line #128) uses memory locations 8272 through 8311.
It then jumps to the top of the screen, but eight lines down, or line #8. These
forty memory locations are 8320 through 8359. Notice there is a gap of eight
unused bytes. These unused bytes are at the end of every line in the bottom
third of the screen. These 64 lines times 8 bytes accounts for the missing 512
memory locations.

99

RASTER GRAPHICS

Programmers talk about Raster Graphics and Vector Graphics on the Apple
II. In reality, due to the nature of the hardware, vector graphics is a misnomer.
Television sets and monitors are raster scanners. Starting at the top of the

screen, they scan one line at a time and turn pixels on or off as needed. True
vector graphics generators have an electron gun that can move in any direc-

tion, so that the beam draws directly between end points.

What is meant by Vector Graphics on the Apple is that a line consisting of a

string of pixels is drawn by the television’s raster scan. However, raster

graphics differs in that entire bytes representing parts of the shape or line are

placed into Hi-Res memory locations to obtain a Hi-Res picture. You don’t

deal in individual pixels per se, but in manipulating Hi-Res shapes a byte at a

time. The entire shape is plotted as a block. In some literature, it is referred to

as the block shape method.

RASTER SHAPE TABLES (PROS AND CONS)

Raster Graphics shape tables, which are bit-mapped shape tables, differ

substantially from Apple’s Hi-Res shape table routines. Apple’s shape table

routines, as described in Chapter 1, are plotting vectors that control direction

of either plot or no-plot commands. These shape tables can be scaled, rotated,

or colored entirely to one of six Hi-Res colors. Bit-mapped shapes, however,

are precise instructions used to determine which pixels to activate in a par-

ticular section of the screen. Although the shape’s detail and color control are

superior, they can’t be easily scaled or rotated.

At first glance, the pros and cons of using one versus the other appear to be a

toss up, but the real advantage in using bit-mapped shape tables is the speed of

implementation. Placing a bit-mapped shape table on the screen involves only

moving bytes of that table stored in memory to the specific screen memory
locations where you want that shape to be drawn. Apple shape tables, on the

other hand, require time-consuming machine language routines to translate

these plotting vectors into a shape on the screen.

FORMING A BIT MAPPED SHAPE TABLE

The shape’s size must be decided before forming a bit-mapped shape table.

A shape can be as large as the entire screen, or as small as one byte wide by one
line deep. But in each case, the shape’s width is N bytes wide, or a multiple of

seven pixels wide. A shape doesn’t have to be 7,14,21... pixels wide, but if a

shape were, say, 16 pixels wide, it would require a width of 3 bytes. The re-

maining five pixels would be zeroed.

The second step is to plot the shape’s pixels on a sheet of graph paper. A
rocket whose shape table can be used later for an arcade game is shown below.

100

1st Byte 2nd Byte 3rd Byte

WHITE SHIP

As a first example, we shall plot this shape in white, thus ignoring color pro-
blems for the time being. Recall that the color white is produced when adjacent
violet and green pixels, or blue and orange pixels, are activated simultaneous-
ly. To produce a white ship, all of the pixels will be used to form the table.

Some of the readers will question whether the ship is entirely white where bytes
have an odd number of pixels, such as in the first and third lines. If you took a
magnifying glass to the ship’s shape on the TV screen, you would see fringes of
violet or green at the edges of an otherwise white ship. This, of course, would
not matter on a black and white monitor.

For those that have difficulty converting pixel patterns into hexadecimal
values, it is easier if you split the byte’s seven bits into a 4-3 pattern.

Remember that the right most three dots plus its hi bit is the first part of the
byte, or “hi nibble’’, as four bit halves of a byte are called.

101

Encoding the rocket’s first byte, the first row is as follows:

and the first byte in the last row is:

The rocket ship’s shape table becomes:

01 00 00

03 00 00

07 00 00

OF 00 00

7F 7F 00
7F IF 07

7F 7F IF
78 7F 7F

Producing a shape table for the same ship in a particular color presents a

more difficult problem. To produce a violet color, all of the green pixels (or

those dots in odd columns) must be suppressed. The revised drawing of the

ship’s shape table is shown below.

102

VIOLET SHIP
(EVEN OFFSET)

where 9 — indicates pixel on
— indicates suppressed dots of original shape

Taking the 5th row, 1st byte as an example:

1 2 3 4
|

5 6 7 PIXEL POSITION

The complete shape table for the violet colored space ship is:

01 00 00
01 00 00
05 00 00
05 00 00
55 2A 01

55 0A 05

55 2A 15

50 2A 55

103

At this time it would be instructive to actually plot both white and violet

space ships on the Hi-Res screen. This can be done by poking the appropriate
bytes into Hi-Res memory.
When we talked about how the screen was mapped, we showed the starting

addresses for the first eight lines of the screen. The starting addresses of each
line are 1024 bytes or $0400 apart. Enter the monitor with a CALL - 151,
then turn on the Hi-Res graphics page 1 and clear the screen as follows:

*C050 <CR> ;SET GRAPHICS MODE
*C053 <CR> ;SET MIXED TEXT & GRAPHICS
*C057 <CR> ;SET HI RES GRAPHICS
*2000:00 <CR>
*2001 <2000.3FFFM <CR> ;CLEAR PAGE 1 GRAPHICS

Now poke in the shape table for the white ship. It will appear at the upper
left corner of the Hi-Res screen.

* 2000:01 0000
*2400:03 0000
*2800:07 0000
*2C00:0F 0000
*3000:7F 7F00
*3400:7F 1F07

*3800:7F 7F1F
*3C00:78 7F7F

A white ship appears. Now clear the screen and poke in the shape table of the
violet ship. The violet ship’s table starts at the screen’s far left, which is the 0th
byte or offset into a particular 40 byte row. Since 0,2,4 are considered even
numbers, this is an even offset. As an experiment, poke the violet ship’s values
into an odd offset, one byte over. First, clear the screen, then type the follow-

ing:

*2001:01 0000
*2400:01 0000
*2800:05 0000
*2C00:

etc.

Instead of a violet ship, you get a green space ship. This is because the even
offsets start with violet as the first pixel, and the odd offsets start with green.

Turning the first pixel on in the odd byte no longer turns on a violet dot, but a
green dot. The solution is to use two sets of shape tables; one for even offsets

and one for odd offsets. Another solution would be to shift the shape’s bit

pattern one bit when going from even to odd offsets; however, this is too time
consuming for fast animation.

104

VGVGVGVGVGVGVGVGVGVGVG VGVGVG

If the original (white) ship's shape is placed so that it begins in an odd offset

(above diagram), and the green-columned pixels (the odd columns) are sup-

pressed, the shape becomes:

00 00 00

02 00 00

02 00 00
0A 00 00
2A 55 00

2A 15 02

2A 55 0A
28 55 2A

The first thing that you notice is that the two plotted shapes (even and odd)
aren't identical. This can be observed by plotting the even offset table beginn-
ing at $2000, and the odd offset table beginning at $2005. You will see that the

odd offset ship is slightly shorter and the peak of the tail lacks a pixel in row
one. This is caused by a lack of symmetry.

This problem can be partially remedied by planning the shape so that the

violet column and its adjacent green column are identical in form. For exam-
ple, if an extra pixel were placed in row 1, column 2 of the orginal white shape
of the ship, the peak of the tail would look identical for both the even and odd
offsets.

To reinforce the concept of keeping a shape symmetrical and identical while
moving it a byte at a time to the right or left, we will consider the following

shape, a green alien:

105

VGVGVGVGVGVGVG HEX

EVEN

OFFSET

(GREEN)

28 01

28 01

08 01

22 04

22 04

22 04

22 04

22 04

GVGVGVGVGVGVGV HEX

54 00

54 00

44 00

11 02

11 02

11 02

11 02

11 02

The even and odd offset shapes have been plotted directly below each other
to show that the shapes are indeed identical, but the lower shape has been
shifted one dot to the left. This effect is inherent in the hardware, because the
colors alternate from column to column. Black and white shapes, however,
don’t require any shifts and, therefore, do not need both odd and even shape
tables.

It is important to design your shape with pixels of double width. Otherwise,
when you block out the columns of the non-needed color, part of the shape may
be absent in the designated color. While this isn’t likely to happen if you form
shape tables by hand, those ambitious programmers who write a utility to do
this automatically might be surprised when plotting their utility generated
shape tables.

106

What we have discussed so far is fine for simply plotting a shape on the

screen, or even moving a shape left or right one byte or seven pixels at a time.

But what would happen if you wanted to move a shape only one pixel or one
horizontal position to the right? If the shape is moved to the right, it no longer

has the same bit patterns in each byte.

Consider the alien shape plotted entirely in white. Each time it is shifted

right it forms a new bit pattern. By the sixth rightward shift, only the first col-

umn of the shape remains in the first byte. Shift it right once more, and we are

back to the beginning pattern, but one entire byte to the right.

White - Oth Shift

White - 1st Shift

Since the width of a byte is seven pixels, there are seven shifted tables (0-6)

for each of the seven positions. When the shape is shifted the fifth time, the pix-

els extend into a third byte. This requires each of the seven shifted tables to be

three bytes wide.

107

White - 6th Shift

Color shape tables, as you might have guessed, have a similar logic for odd
and even offsets. But, as we shall demonstrate, only seven offset tables are
needed rather than the expected fourteen.

If you take a simple horizontal line, six pixels wide, as a shape and form a
shape table for its green color, you would always have three green pixels lit. As
you shift this line over the seven positions, starting first with the even offset,

then continuing over the odd offset, you will notice a pattern. Every other time
that you shift, the pixel pattern remains the same.

If you were to shift this shape to the right one column for each screen cycle
using 14 shape tables, the shape would remain static for two cycles, then move,
then stay put for two, then move once again. This produces a very jerky mo-
tion. Since the shape tables duplicate themselves in pairs, it would be easier to

use the Oth even, 2nd even, 4th even, 6th even, 1st odd, 3rd odd, and 5th odd
for a total of 7 shifted tables. The 6th odd shape in the above figure, which ap-
pears to be the eighth shape, isn’t. It is actually a duplicate of the Oth even
shape, but beginning at the next even-odd pair.

In summary you have learned how bit-mapped shape tables are formed. In
the next chapter, we shall learn how to draw and animate these shape tables.

EVEN VGVGVGVGVGVGVGVGVGV GVGV

0th 1 D D
1st Sin a i1B
2nd D aBi BB
3rd m an an B BB
4th u D B BB BB
5th mBfSi B B B L_j
6th u B B BB BB
ODD

Oth

—
9I B B B B

1st I1 B B DB B_
2nd S?iIB B B BB
3rd BmB BB
4th s SiBidB B
5th iEfl IDBO OB
6th LL BB BOB

109

CHAPTER 5

BIT MAPPED GRAPHICS

Drawing a bit-mapped shape table anywhere on the Hi-Res screen is a sim-

ple procedure once the basic concept is understood. The shape table is stored

sequentially in memory, either by rows or by columns. The technique,

therefore, is to load each of the bytes, one at a time, into the Accumulator, find

the position in memory for the screen location where you want to plot that byte,

then store it in that memory location.

±1II c D E F

t
Shape Table
in memory

The difficulty, as shown in the previous chapter, lies in finding a particular

memory location, given an X,Y screen coordinate. Speed is the critical factor

in doing arcade animation; therefore, a technique known as Table Lookup is

used to locate the starting address of any single line on the Hi-Res screen.

Each of the 192 screen lines has a starting address for the first position (left

most) or the Oth offset. The first line or line #0 is located in memory at location

$2000. The second line is at $2400, etc. Each address takes two bytes. The first

part is the hi-byte, which in the later case is $24. The second byte, $00 ,is the

lo-byte. These can be separated into two tables, one containing the lower order

address of each line (call it YVERTL) and the other containing the higher

order address of each line, YVERTH. Each table is 192 bytes long (0-191).

You can access any element in either table by absolute indexed addressing.

The effective address of the operand is computed by adding the contents of the

Y register to the address in the instruction. That is:

EFFECTIVE ADDRESS = ABSOLUTE ADDRESS + Y REGISTER.

Ill

If our YVERTH table were stored at $6800 and we wanted to find the start-
ing address of line 1 (remember lines are numbered 0-191), we would index in-
to the table one position and load that value into the Accumulator,

6800:20 24 28 2C 30 34 YVERTH TABLE

so LDA YVERTH,Y where Y=$01 will fetch the value $24 from memory
location $6800 +$01 = $6801, and place it in the Accumulator.

Similarly, if YVERTL were stored immediately after the first table, then:

68C0:00 00 00 00 YVERTL TABLE
Y Register = $01

LDA YVERTL,Y will take the value $00 stored in memory location
$68C0 + $01 = $68C 1 , then place it in the Accumulator.

Eventually, we will want to store the first byte from the shape table into
memory location $2400. This can be done efficiently if the two byte address is

stored sequentially in zero page. Let’s store the lo byte half of the address,
HIRESL, at location $26, and the hi byte half, HIRESH, at location $27 in
zero page:

LDY #$01
LDA YVERTH,

Y

STA HIRESH
LDA YVERTL,

Y

STA HIRESL

Y REGISTER CONTAINS LINE
LOOKUP HI BYTE OF START
OF ROW IN MEMORY
STORE ZERO PAGE
LOOKUP LO BYTE OF ROW IN
MEMORY
STORE ZERO PAGE

We can change a particular Hi-Res screen memory location using zero page
by indirect indexed addressing in the form:

STA (HIRESL),Y Y Reg =$03

If the computer finds a $00 in location $26 (HIRESL) and a $24 in location
$27 (HIRESH), then the base address is $2400. The Accumulator stores a
value into memory location $2400 + $03, or location $2403, as shown:

112

INDIRECT INDEXED ADDRESSING

STA (HIRESL) ,Y

The final addressing mode that we must consider is Indexed Indirect Ad-
dressing. It is of the form:

LDA (SHPL,X)

It is very similar to the the Indirect Indexed addressing mode except the in-

dex is added to the zero page base address before it retrieves the effective ad-

dress. It is primarily used for indexing a table of effective addresses stored in

zero page. But in the form we are going to use it, the X register is set to 0; thus,

it simply finds a base address:

113

INDEXED INDIRECT ADDRESSING

LDA (SHPL.X)

The reason we must use this second form of indirect addressing is a shortage
of registers in the 6502 microprocessor. We are already using the Y register in
the store operation and there isn’t an indirect indexed addressing mode of the
form LDA (SHPL),X. Thus, we must go to the alternative addressing mode
LDA(SHPL,X).

What this all boils down to is that we want to load a byte from a shape table
into the Accumulator and store it on the screen with the following instructions:

LDA (SHPL,X) ; STORE BYTE FROM SHAPE TABLE
STA (HIRESL),Y ; STORE BYTE ON HI-RES SCREEN

We can index into the shape table by incrementing the low byte SHPL by
one each time, then store that byte into the next screen position on a particular
line by incrementing the Y register. This zero page method is faster than doing
the equivalent code with absolute index addressing, because two byte addresses
can be handled with fewer instructions, less memory space, and with fewer
machine cycles.

Obviously, a generalized subroutine must be developed to find the screen
memory address (HIRESL & HIRESH), given a line number and a horizon-
tal displacement. We will call this subroutine GETADR, short for Get Ad-
dress:

114

HORIZ. OFFSET
0 1 2 3 4 5 6 7 38 39

Each time a row of shape table bytes is transferred to successive memory
locations on the Hi-Res screen, the program will call the subroutine
GETADR. The line’s starting memory address is then offset by the horizontal

location of the shape on the screen.

Memory address = Line # starting address + horizontal offset

GETADR LDA YVERTL.Y ;L00K UP L0 BYTE OF LINE
CLC
ADC HORIZ ; ADD DISPLACEMENT INTO LINE
STA HIRESL ; STORE ZERO PAGE
LDA YVERTH,Y ;L00K UP HI BYTE OF LINE
STA HIRESH
RTS

where the Y register has the vertical screen value (0-191).

If you are designing an arcade game, you will probably have several dif-

ferent shapes on the screen at the same time. Perhaps your defending space

ship is paddle-controlled to move vertically but always remains at one par-

ticular horizontal offset; while the aliens, attacking in zig-zag fashion, always
move horizontally from one side of the screen to the other. Keeping track of
each shape’s variables, which are inputted into a generalized drawing routine,

is more easily done if a setup subroutine is incorporated into your program.
This assures that you haven’t forgotten to initialize anything before entering

the drawing subroutine.

115

Only a few variables need to be defined in the setup routine: the location of
the shape table, the horizontal displacement on the screen, and the width and
depth of the shape.

The following example is for the space ship that we designed a shape table
for in the last chapter. A word on the notation used for determining the lo and
^‘addresses for the shape called SHIP is suitable here. In the TED II + andBIG MAC assemblers from CALL APPLE, MERLIN from Southwestern
Data Systems, and TOOL KIT from Apple, LDA #<SHIP obtains the lower
order address of the table called SHIP. LDA #> SHIP returns the higher order

Mcurn
ad

,

dr
^
ss ' In the LISA assembler from ON-LINE Systems, LDA

ffSHIP loads the lower order byte and LDA /SHIP loads the higher order byte
as shown: 7 ’

*SHIP SETUP
SSETUP LDA #<SHIP

STA SHPL
LDA #>SHIP
STA SHPH
LDA #$08
STA DEPTH
LDA #$09
STA HORIZ
LDA #$03
STA SLNGH
STA TEMP

RTS

I LOAD LOWER ORDER BYTE OF SHAPE TABLE

;L0AD HIGHER ORDER BYTE OF SHAPE TABLE

; SHAPE IS 8 LINES DEEP

; SHAPE STARTS IN 10TH COLUMN

; SHAPE IS 3 BYTES WIDE
; STORED HERE ALSO BECAUSE DRAWING
; ROUTINE DECREMENTS SLNGH ON EACH
;LINE AND VARIABLE MUST BE RESTORED
; AT START OF NEXT ROW

oJ^AT^
aWl

I
1S ro

.

utine 1S more efficient the fewer times it accesses theGETADR subroutine. Therefore, it is much faster to load and store on the
same screen line until the end of the shape’s width is reached. Drawing our
spaceship a byte at a time across its width will only require calling GETADR
Eight times. But if we plotted down instead, GETADR would be called for
each byte, or 24 times, an unnecessary waste of time.
As we load and store across a particular screen line, we decrement SLNGH

the ship’s width until SLNGH equals zero. When we are finished with a rowTX^JT T
t0 the neXt Screen line down and decrement theDEPTH. When DEPTH reaches zero, we have plotted all rows of the shape

and we are finished.
r

116

INPUT:
SHAPE ADDR: SHPL.SHPH
X POSITION: HORIZ
DEPTH OF SHAPE: DEPTH
WIDTH OF SHAPE: SLNGH

& TEMP

PUT TVERT(vertical pos.)IN Y REG.

Map of elements in
shape table as they
appear on the screen

0 1 2

3 4 5

6 7 8

9
J

• • •

DRAW LDY TVERT
JSR GETADR

LDX #$00
LDA TEMP
STA SLNGH

DRAW2 LDA (SHPL,X)
STA (HIRESL) ,Y

INC SHPL
INY
DEC SLNGH
BNE DRAW

2

INC TVERT
DEC DEPTH
BNE DRAW
RTS

; VERTICAL POSITION
;FIND BEGINNING HI-RES SCREEN ADDRESS
;0F ROW

RESTORE VALUE OF WIDTH FOR NEXT ROW
GET BYTE OF SHAPE TABLE
PLOT ON SCREEN
NEXT BYTE OF SHAPE TABLE
NEXT POSITION ON SCREEN
DECREMENT WIDTH
FINISHED WITH ROW YET?
IF SO, INCREMENT TO NEXT LINE
DECREMENT DEPTH
FINISHED ALL ROWS?
YES, END

Although the first row of the shape can be plotted at any TVERT (0-191)
position, ifTVERT began at 190, the computer would attempt to plot the third
line at TVERT, which would equal 192. Indexing into the table that far would
most likely produce garbage, as you would index beyond the end of the table.
You should be always careful that:

TVERT < = 192 - DEPTH

118

A simple test somewhere before the draw subroutine would suffice. Normal-
ly, this should be incorporated into a paddle read-routine. This will be discuss-

ed further in the next chapter.

XDRAWING SHAPES

Objects that move on the screen are shifted in position by erasing the object’s

first position before drawing it at its new position. The simplest method to ac-

complish this is to draw the shape by exclusive-oring it before shifting it.

The exclusive-or instruction (EOR) is primarily used to determine which
bits differ between two operands, but it can also be used to complement
selected Accumulator bits. The way it works is elementary. If neither a par-
ticular memory bit or Accumulator bit is set or their values are zero, the result

is zero. If either one is set, then the result is on. But if both are set, they cancel
and the result is zero.

MEMORY BIT

0

EOR 0

1

1

ACCUMULATOR
BIT
0

1

0

1

RESULT BIT IN
ACCUMULATOR

0

1

1

0

If we take a byte on the screen and EOR it with the same byte

0 110 0 11
EOR 0 110 0 11

SHAPE ON SCREEN
SHAPE

0 0 0 0 0 0 0 RESULT

from the shape table, the result is zero or a screen erase. A similar effect would
happen if a blank screen were EORed with a shape then EORed once again.

0 0 0 0 0 0 0

EOR 0 110 0 11
BLANK SCREEN
WITH SHAPE

0 110 0 11 RESULT IS SHAPE ON SCREEN
EOR 0 110 0 11

0 0 0 0 0 0 0 RESULT IS BLANK SCREEN

Another use for EORing is that it doesn’t damage the background if a shape
is EORed on the screen, and then off again. However, it does distort the shape
slightly.

119

EOR
BACKGROUND
WITH SHAPE

0 0 0 0 0 0 1

0 10 110 0

0 10 110 1 RESULT ON SCREEN (SHAPE
DISTORTED LAST BIT)

EOR 0 10 110 0 WITH SHAPE

0 0 0 0 0 0 1 GET BACKGROUND BACK

In the above example, an extra pixel in the shape’s last bit position distorts
the shape drawn on the screen. In the example below, the fourth bit position
becomes a hole in the shape.

0001000 BACKGROUND
EOR 0 10 110 0 WITH SHAPE

0 1 0 0 1 0 0 RESULT ON SCREEN
^ hole here

EOR 0 10 110 0 WITH SHAPE

0 0 0 1 0 0 0 GET BACKGROUND BACK

There are techniques to avoid distorting the shape wherein the background
is likely to interfere during the drawing process. This involves a combination of
EORing and ORing the Hi-Res screen, with the background stored on a sec-
ond Hi-Res screen. An alternate method is to store the screen memory bytes in
a temporary table equal in size to your shape, while you draw your shape.
When erasing, you replace the shape with the background stored in your temp-
orary table. This is a little complicated, but it works. An example using this
method is presented at the end of this chapter.

The OR memory with Accumulator (ORA) instruction differs from the
EOR instruction in that if both memory and Accumulator bits are on, then the
result is one, or on.

MEMORY BIT ACCUMULATOR
BIT

RESULT BIT IN
ACCUMULATOR

0 0 0
ORA 0 1 1

1 0 1

1 1 1

120

If the background were as follows, and you ORed it with the shape, the
shape is correct.

0 10 10 10 BACKGROUND PAGE 1

ORA 1 1 1 1 0 0 0 WITH SHAPE

11110 10 GET SHAPE + BACKGROUND WITH
NO HOLE IN SHAPE

Unfortunately, if you EOR this result with the shape again, the background
is flawed.

11110 10 SHAPE + BACKGROUND
XOR 1 1 1 1 0 0 0 WITH SHAPE

0 0 0 0 0 1 0 FLAWED BACKGROUND

Another solution is to take the shape with the background above and EOR it

with itself, then EOR it with the background stored on page 2. However, it is

probably quicker and easier to just copy the background stored on page 2
directly to screen 1

.

11110 10 SHAPE + BACKGROUND
XOR 11110 10 WITH ITSELF

0 0 0 0 0 0 0 LOSE EVERYTHING
XOR 0 10 10 10 WITH BACKGROUND STORED

PAGE 2

0 10 10 10 GET BACKGROUND BACK

We can incorporate the exclusive-or instruction in our XDRAW routine. If
we EOR the shape we had previously drawn on the screen, nothing remains.

XDRAW LDY TVERT ; VERTICAL POSITION
JSR GETADR
LDA TEMP
STA SLNGH ; RESTORE VALUE OF WIDTH FOR NEXT ROW
LDX #$00

XDRAW2 LDA (SHPL.X) ; GET BYTE FROM SHAPE TABLE
EOR (HIRESL) ,Y ;X0R WITH BYTE ALREADY ON THE SCREEN
STA (HIRESL), Y ;DRAW ON SCREEN
INC SHPL ;NEXT BYTE OF SHAPE TABLE

121

INY

DEC SLNGH
BNE DRAW

2

INC TVERT
DEC DEPTH
BNE DRAW
RTS

NEXT POSITION ON SCREEN
DECREMENT WIDTH
FINISHED WITH ROW?
IF SO, INCREMENT TO NEXT LINE
DECREMENT DEPTH
FINISHED ALL ROWS?
YES, END ROUTINE

Now that we know how to DRAW and XDRAW a bit-mapped shape
anywhere on the Hi-Res screen, the principle for animating these shapes is the
same as for Apple shapes discussed previously in Chapter 1 . A shape is erased
from the screen, its new position is calculated, then it is redrawn at this new
position. The procedure is outlined below:

A delay has been inserted between the DRAW and the XDRAW to allow
the object to be on the screen longer than it is off. Without the delay, the object
is erased immediately after it is drawn. This does not give the shaped image
sufficient time to remain on screen during one animation frame. The result is a
badly flickering image. The necessary delay can be a accomplished by a call to
the monitor WAIT subroutine. A hundredth of a second delay is sufficient, but
it could be doubled by changing the value in the Accumulator to $56.

LDA #$3C
JSR $FCA8 ;CALL TO WAIT SUBROUTINE

122

COLOR PROBLEMS WITH HORIZONTAL MOVEMENT

When colored shapes are moved vertically, as with our paddle driven space
ship, they remain in either the same even or odd offset in which they started.
However, when an object moves horizontally a byte at a time, colors shift, or
alternate, as the shape moves from an even to an odd offset. As we saw in the
last chapter, two different shape tables are needed, one for the even offsets and
another for the odd offsets.

An algorithm must be devised to determine whether the HORIZ offset is

odd or even. You can ascertain if a value is odd or even by right-shifting the
value in the Accumulator so that the low bit enters the carry bit. Since only odd

128 64 32 16 8 0
numbers contain a one in the first bit position, only odd numbers will set the
carry. Of course, the carry must be cleared first or this operation will be
meaningless.

In order to make the example more meaningful, we will assume we have an
even and an odd shape stored in a table called SHAPES. Each shape is one
byte wide by eight bytes deep. The even offset shape occupies the first eight
bytes, and the odd offset shape follows in the next eight bytes. Let us also
assume that the shape table doesn’t cross a page boundary (the hi byte is

constant).

1 *EXAMPLE:COLOR OFFSET PROBLEM & SOLUTION
2 0RG $6000
3 HORIZ DS 1

4 SHPL EQU $50
5 SHPH EQU SHPL+$1

6001: 18 6 CLC ; CLEAR CARRY
6002: AD 00 60 7 LDA HORIZ ; LOAD HORIZ VALUE STORED AT $6000
6005: 4A 8 LSR ; LOGICAL SHIFT RIGHT INTO CARRY
6006: B0 07 9 BCS ODD ;IF CARRY SET, GOTO ODD CODE
6008: A9 18 10 EVEN LDA #<SHAPES ; L0 BYTE OF EVEN SHAPE TABLE
600A: 85 50 11 STA SHPL
600C: 4C 13 60 12 JMP C0NT
600F: A9 20 13 ODD LDA #<SHAPES+8 ;L0 BYTE OF ODD SHAPE TABLE
6011: 85 50 14 STA SHPL
6013: A9 60 15 C0NT LDA #>SHAPES

; HI BYTE OF TABLE
6015: 85 51 16 STA SHPH
6017: 60 17 RTS

ia #

6018: 00 01 02
601B: 03 04 05
601E: 06 07 19 SHAPES HEX 0001020304050607 OFFSET SHAPE
6020: 08 09 0A (fvten
6023: 0B OC 0D
6026: 0E OF 20 HEX 08090A0B0C0D0E0F ;0DD OFFSET SHAPE

—END ASSEMBLY-

123

You can easily see in the above example that the pointers to the proper shape
table will be used correctly by our drawing subroutine. You can put a HORIZ
value in location $6000 and single step the code in the monitor. If you don’t
have the single step and trace feature because you have an APPLE II PLUS,
type a 6001G, then check locations $50 and $51 for the values of SHPL, and
SHPH, respectively. Thus, if both the even and odd offset tables are generated
for a violet colored object, the object will always remain violet at any horizontal
screen position 0 -39 if the correct table is used.

Color shifting problems become more intricate if you intend to do very fine

movement or single pixel moves to the left or right, versus coarse movements of
a byte or seven pixels at a time. As we discovered in the last chapter, single
pixel movements in color aren’t effective due to the alternating columns of
complementary colors. The shape tends to lag a cycle, then jumps two pixels.

EVEN OFFSET ODD OFFSET

SCREEN
0 1 2 3 4 5 6 7 8 9 A B C D

V G V G V G V G V G V G V G

SHAPE 0
TABLE

4 5 6

You can see from the above illustration that our shape stays in the same posi-
tion for two cycles, then moves. It would be easier to move a shape two pixels
horizontally at a time and use only seven shape tables for a shape instead of
fourteen

.

The simplest method for keeping track of which offset table is to be used at a
particular horizontal position is through tables. One table (XBASE) is needed
for the horizontal byte for any horizontal screen position, and another (XOFF)
is needed to determine which of the seven offsetted shape table is to be plotted.
The tables take the following form:

124

XBASE HEX 00000000000000
HEX 00010101010101
HEX 02020202020202
HEX 02030303030303

HEX 26262626262626
HEX 26272727272727

XOFF HEX 00000101020203
HEX 03040405050606
HEX 00000101020203
HEX 03040405050606

ETC

XOFF
XBASE

Oth 1st 2nd 3rd 4th 5th 6th 7th
SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE

00 00 01 01 02 02 03 03 04 04 05 05 06 06 00 00
00 00 00 00 00 00 00 00 01 01 01 01 0! 01 02 02

,0 1^2_^3 6

Oth Horiz. Offset

B^C^J) E F

1st Horiz. Offset

X COORDINATE VALUE

While the XOFF table is straight-forward in that two adjacent X positions
reference the same shape in the table, the XBASE table, which references the
horizontal byte offset, requires some explanation. You would assume that all

shapes plotted in the first seven horizontal screen positions (X = 0 to 6) would
be plotted in the Oth, or even offset, and all shapes plotted in the second seven
positions (X = 7 to 13) would be plotted in the first or odd offset. The problem
occurs at the boundary of even-odd offset pairs. The third shape table is plotted
for both X = 6 and X = 7. But, if the 3rd shape is plotted first in the Oth (even)
offset for X = 6, then plotted in the 1st (odd) offset at X — 7, you would get a red
shape in the first case, and a blue shape in the second case. The shape would
also be shifted over one whole byte, because the shape at X - 7, which is

equivalent to that at X » 6 in the odd offset, would instead have an offset of 2;
thus it would appear to be at the end of the byte instead of at the beginning.

125

Therefore, the shape at X = 7 must also be plotted in the Oth (even) offset. I’ll

be frank and say that the first time I encountered the problem, I spent some
time looking for the error by stepping through my code. The solution was that
the XBASE tables had to be modified to account for the inconsistency.

The following example will make this clearer. To determine the proper offset

and which shape to plot at X =2, you would calculate as follows:

Look up the third position of XBASE for the offset

or XBASE,2 = $00

Look up the third position of XOFF for the shape number

or XOFF,2 = $01

So plot the first shape in Oth offset.

For X = 7

Look up the eighth position of XBASE for the offset

or XBASE, 7 = $00

Look up the eighth position of XOFF for the shape number

or XOFF, 7 = $03

So plot third shape in Oth offset.

This can be formalized into code as part of a setup routine prior to accessing
our drawing routine.

SETUP LDY XVALUE
LDA XBASE,

Y

STA HORIZ
LDX X0FF,Y
LDA SHPL0.X
STA SHPL
LDA #>SHAPES
STA SHPH

GET BYTE OFFSET FROM TABLE
STORE OFFSET
TABLE TO FIND SHAPE NUMBER
INDEX TO GET L0 BYTE OF SHAPE TABLE
STORE L0 BYTE IN ZERO PAGE
GET HI BYTE OF SHAPE TABLE
STORE HI BYTE IN ZERO PAGE

SHPLO is a table seven bytes long that contains the lo order byte address of
our shapes. Assuming that there are seven shapes, each containing 24 bytes,
which are stored at $800 in a table called SHAPES, then the table takes the
following form. The HEX pseudo-op in most assemblers informs the assembler
to place hexadecimal data bytes beginning at the location SHPLO. It is

equivalent to directly assigning storage space and filling in the values, as
follows:

126

SHPLO HEX 00 18 30 48 60 78 90

OTH 1ST
SHAPE SHAPE ETC.

The obvious intent of the previous method was to save shape table space. If a
shape were three bytes wide by eight rows deep, seven tables would require 168
bytes of storage. Requiring the use of all fourteen shapes would double that.
While 336 bytes isn’t much memory, ten shapes use nearly 3.5K and if any of
these were to be rotating shapes, much of memory would be wasted with shape
tables.

v

For those readers who would feel more comfortable calculating and using all
fourteen shapes in their table, the code is the same but the tables differ slightly.
The tables are more straight-forward because there are no boundary problems.

XBASE HEX 00000000000000
HEX 01010101010101
HEX 02020202020202

•

HEX

•

26262626262626
HEX 27272727272727

XOFF HEX 00010203040506
HEX 0708090A0B0C0D
HEX 00010203040506
HEX 0708090A0B0C0D

SHPLO HEX 00183048607890
HEX A8C0D8F0082038

In this case the shape table extends beyond a page boundary, so a table to
reference the Hi byte as well must be included.

SHPHI HEX 08080808080808
HEX 08080808090909

Replace the last two instructions for the hi byte in our setup routine with the
iollowing:

127

LDA SHPHI , X ; INDEX TO GET HI BYTE OF SHAPE TABLE
STA SHPH ; STORE HI BYTE IN ZERO PAGE

There is an alternate way to avoid modifying the XBASE table. You could

test for the combination of drawing the third shape while at an odd offset.

At first it seemed plausible that using fourteen shape tables might be the

better method if, say, the gun were in color and its bullets were in B&W. But

since the gun shifted two dots per move, the bullet should do likewise. Besides,

the same drawing routines could be accessed.

THE SCREEN ERASE

Erasing an entire Hi-Res screen quickly without the viewer being aware is

very important in some games. One well known Asteroid game resorted to a

partial (160 line) screen erase instead ofXDRAWing the shapes. No one notic-

ed because the frame rate was fast enough, and the animation was page-
flipping between graphics screens.

The process is simple and can be used for setting an entire screen to a
background color. The Accumulator is loaded with a value (#$00 for black) and
stored successively in all 8192 screen memory locations. If we had a sixteen-bit

machine and could index all 8192 locations in one gigantic loop, things would
be easy. But it has to be done in 256 byte blocks, or in what is called pages of
memory. The flow chart is shown below.

Remember that the instruction STA (HIRESL),Y uses a two byte address in

zero page

$26 = HIRESL = #$00
$27 = HIRESH = #$20

then increments it by Y. If Y = $07, then STA (HIRESL),Y stores what is

in the Accumulator in location $2000 + $03 = $2003.

HIRESL EQU $26
HIRESH EQU HIRESL +$01

CLRSCR LDA #$00 ; SETUP POINTERS TO CLEAR SCREEN
STA HIRESL ; BEGINNING A $2000 (PAGE1)
LDA #$20
STA HIRESH

CLR1 LDY #$00 ;PAGE BEGINS AT 0
LDA #$00 ;L0AD ZERO TO ERASE TO BLACK

CLR2 STA (HIRESL) ,Y; STORE IN SCREEN MEMORY
INY ;NEXT BYTE

128

BNE CLR2

INC HIRESH
LDA HIRESH
CMP #$40
BLT CLR1
RTS

;D0 ALL 256 BYTES; AT 256TH BYTE WRAPS
;BACK TO 0 IN Y REGISTER .FALLS THROUGH
;D0 NEXT PAGE

; FINISHED WITH SCREEN?
;N0, START NEXT 256 BYTE PAGE
;YES, ALL DONE

This routine takes 35 milliseconds. Note: Screen #2 could be cleared just as
easily by storing #$40 in HIRESH and comparing it to #$60 to test for the
finish.

129

The screen can be cleared somewhat faster if inline code is used. This is

sometimes desirable if part of a screen must be cleared quickly, but becomes a
very long and tedious routine if every line is to be cleared. A zero is stored in

each screen memory location indicated for a particular column or offset. When
it is finished with that column, it increments to the next and clears that, also.
Since the code contains the addresses for each line sequentially, precise control
can be achieved over what portion of the screen is to be cleared. Of course,
other colors can be used too. For instance:

LDA #00 ; BLACK
LDY #$00 ; START WITH OTH COLUMN

LOOP STA $2000, Y ; ADDRESS OF OTH LINE
STA $2400, Y ; ADDRESS OF 1ST LINE
STA $2800, Y ; ADDRESS OF 2ND LINE

• • •

. . . ; Other lines
INY
CPY #$28 ; RIGHT SIDE SCREEN?
BEQ END
JMP LOOP ;NEXT COLUMN

END RTS

Sometimes it is desirable to set a Hi-Res screen to a particular color. But
color has its inherent odd-even offset problems. For example, to set a screen to
blue, a #$D5 would be stored in all even offset memory locations, while a #$AA
would be required in all odd offset memory locations. Therefore, we have to

load and store in pairs as we completely fill the screen memory with bytes that
cause only the blue pixels to be activated.

Fortunately, this routine only changes our clear screen routine slightly. You
load a #$D5 for the even offset in the Accumulator, store it at the appropriate
screen location referenced by HIRESL & HIRESH, then increment the index
or pointer in the Y register. Then #$AA is loaded and stored for the odd offset
in the next screen location. The Y register pointer is then incremented again.
Because the BNE test only falls through when the Y register reaches 0 (or
actually 256), this can only happen on an even increment. Therefore, the test

isn’t needed after the first INY, as it can’t happen when Y is an odd value.

1 *CLEAR SCREEN COLOR TO BLUE
2 0RG $6000
3 HIRESL EQU $26
4 HIRESH EQU HIRESL+$1

6000: A9 00 5 CLRSCR LDA #$00
6002: 85 26 6 STA HIRESL
6004: A9 20 7 LDA #$20
6006: 85 27 8 STA HIRESH

130

6008: AO 00
600A: A9 D5
600C: 91 26
600E: C8
600F: A9 AA
6011: 91 26
6013: C8
6014: DO F4
6016: E6 27
6018: A5 27
601 A: C9 40
601C: 90 EA
601E: 60

9 CLRl LDY #$00
10 CLR2 LDA #$D5
11 STA (HIRESL).Y
12 INY
13 LDA #$AA
14 STA (HIRESL).Y
15 INY
16 BNE CLR2
17 INC HIRESH
18 LDA HIRESH
19 CMP #$40
20 BCC CLRl
21 RTS

;BLUE (EVEN)

;BLUE (ODD)

;D0 NEXT PAGE

; FINISHED WITH SCREEN’
; NO, START NEXT 256 BYTE PAGE
;YES! DONE

—END ASSEMBLY-

SELECTIVE DRAWING CONTROL & DRAWING MOVEMENT
ADVANTAGES

We have seen how background is preserved by EORing shapes on and then
oft the Hi-Res screen. However, there are times when this is not effective. For
instance, complex backgrounds make a mess of a shape, often making it

unrecognizable. In these cases, it is best to draw the shape on the screen
normally. Naturally, background is lost, but it can be redrawn from memory.
There is another function that is quite important in selective drawing con-

trol. That is the And Memory with Accumulator (AND) instruction. It is
primarily used to filter or mask out certain bits in the Accumulator or, in the
case of the Hi-Res screen, mask out certain pixels. Both the memory bit and
the Accumulator bit must be set (on) for the result to be one. If either memory
bit or Accumulator bit is off, or both bits are off, the result is zero.

Example:

Hi bit

10 10 10 11
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

LDA #$D5
AND #$F0

RESULT #$D0

.
above example effectively stripped off the first four pixels of the byte

While it is difficult to design a simple case for using the AND instruction in
selective drawing, it is used for “making a hole” in a background beforeURing a colored shape into the hole. It is a tricky procedure for beginners,
because the complement of an equivalent white shape is used during the AND
operation.

131

We have the following background and colored shape:

1 1 1 1 0 0 0 1 1 0 1 1 1 1 BACKGROUND
1 0 1 0 1 0 1 0 1 0 0 0 0 0 SHAPE

First we need the complement of the white shape.

1 i 1 i 1 1 1 1 1 0 0 0 0 0 WHITE SHAPE CONTAINS
VIOLET & GREEN

1 i 1 l 1 1 1 1 1 1 1 1 1 1 EOR #$FF

0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 1 l 0 0 0 1 1 0 1 1 1 1 AND WITH BACKGROUND

0 0 0 0 0 0 ~o 0 0 0 1 1 1 1 RESULTANT HOLE

Now OR the shape into the hole.

0 0 0 0 0 0 0 0 0 0 1 1 1 1 BACKGROUND HOLE
1 0 1 0 1 0 1 0 1 0 0 0 0 0 ORA COLORED SHAPE INTO

HOLE

1 0 1 0 1 0 1 o’ 1 0 1 1 1 1 RESULTANT COLORED SHAPE
& BACKGROUND

Notice that the background doesn’t interfere with the colored shape but
surrounds it.

The AND instruction is also quite useful in detecting collisions. The pro-

cedure will be discussed in detail in the next chapter.

The goal of any programmer is to write fast and efficient code. You can do
this by taking advantage of the way the screen is mapped and manipulated in

memory. Because it is faster to change a byte, or group of seven pixels rather

than each of the pixels separately, it is easier to have separate shapes for each

movement to the right or left within a byte. It is also easier to move a shape or

object one byte, or seven pixels at a time, horizontally.

Likewise, it is easier during horizontal movement to keep a shape within one
of the 24 - eight row subgroups on the Hi-Res screen. If you adhere to that

restriction, only the memory address of the first line of the shape need be
accessed by tables. Each succeeding line is +$400 in memory at any given

horizontal offset. This method saves many machine cycles by not accessing the

GETADR routine for each and every horizontal line in the shape. If your
shape is three bytes wide by eight lines deep, the drawing algorithm only has to

call the GETADR routine once. Each successive byte in that offset or column is

plotted at a location incremented by + $400 bytes in screen memory. After all

132

eight bytes have been plotted in that column, screen memory is decremented
by $2000 bytes to return to the top of the subgroup in order to plot in the next
column. It is a very fast method, one that many games, like Apple Invaders,
uses. If you examine that game, the aliens move slowly across the screen, each
character being eight lines deep. When they advance closer to landing, they
jump a full eight lines, to be plotted within the next lower eight line subgroup.
Although moving 40 aliens may appear slow in the game, there is a very long
delay loop. Perhaps some readers have seen the modified version with the
hyperspeed option. The game is quite capable of running ten times faster.
The subroutine shown below has the following inputs which can be set in

another subroutine called SETUP.

X POSITION IN Y REGISTER
BASE ADDR: HIRESL , HIRESH
SHAPE ADDR: SHPL, SHPH
LENGTH IN X DIRECTION: LNGH

DRAW LDX
DRAW2 LDA

EOR
STA
LDA
CLC
ADC
STA
INC
CMP
BCC
SBC
STA
DEC
BEQ
INY
BNE

DRAW3 RTS

#$00
(SHPL,X)
(HIRESL) ,Y

(HIRESL),Y
HIRESH

#$04
HIRESH
SHPL
#$40
DRAW2
#$20
HIRESH
LNGH
DRAW3

DRAW2

X-REG MUST BE 0
GET BYTE FROM SHAPE TABLE
EXCLUSIVE OR IT WITH WHAT IS ON SCREEN
PUT IT ON HI-RES SCREEN
WANT TO REACH NEXT LINE BY ADDING $400
BY ADDING 4 TO HI BYTE OF BASE ADDR.
ADD AFTER CLEARING CARRY
SAVE IT
NEXT BYTE OF SHAPE ADDR.
ARE WE FINISHED WITH THAT COLUMN
NO, DO NEXT BYTE
YES, BACK TO BASE ADDR (OR TOP)
SAVE IT
NEXT COLUMN SO DECREMENT LENGTH
ARE WE FINISHED
DRAW AT NEXT X POSITION
THIS BRANCH IS ALWAYS TAKEN
DONE!

Another way of keeping the code simple is to use only the first 256 horizontal
screen positions. This simplifies horizontal paddle routines and eliminates the
problem of multi-byte additions to reach screen positions between X =256 andX = 279. A large number ofgames like GAMMA GOBLINS and ASTEROID
FIELD have resorted to this technique. The 256 position field need not be left
justified, but could be centered using a fixed left margin displacement.

133

INTERFACING THE DRAWING ROUTINES TO AN APPLESOFT
PROGRAM

Bit-mapped shape tables, as we have seen, are much more detailed and more
colorful than APPLE shape tables. There are many programmers not writing a
high speed animated game who would like to use these shape drawing routines
in an Applesoft program.

If you wanted to control the vertical movement of our space ship by paddle
control from an Applesoft program, it can be accomplished in the following
manner:

°

The machine language drawing routine and the setup routine require only
the inputs of where to start drawing the ship on the screen. The ship’s horizon-
tal location is called HORIZ in the machine language subroutine. The ship can
be positioned horizontally from the far left (0) to nearly the right hand side of
the screen (37). At 37, the ship’s nose touches the right screen boundary.
Larger values would produce a very strange wrap-a-round, especially at 38 and
39. HORIZ is located at $6001 or 24577 decimal. A value has only to be poked
in at this location to change the ship’s horizontal location. The ship’s vertical
position is set by TVERT. Its value is trimmed to 0-183 to prevent vertical
wrap-a-round. It is located at $6000 or 24576 decimal. TVERT can be directly
driven by a paddle routine in the Applesoft program.

HORIZ

TVERT—

The machine language subroutine with code, lookup and shape tables is only
502 bytes long. It starts a $6006 or 24582 decimal. It sets up the drawing
routine before calling it. The drawing routine EOR’s the ship’s shape to the
screen, one byte at a time.

This routine is quite versatile and could handle multiple shapes from
Applesoft with little modification to the code. The variables for each shape in
the setup routine; lo and hi bytes of the shape, as well as its depth and length,
would have to be poked in from Applesoft. The JSR to SSETUP would be
removed and the new shapes would be added to the end or in a table elsewhere
in memory, in a location where it wouldn’t be overwritten by your Applesoft
program.

135

You must be careful with zero page pointers when interfacing BASIC pro-
grams to machine language programs. Although I’ve been lax in choosing loca-

tions $52 through $58, these conflict with both BASICS. There is a chart in the
Apple II Reference manual which shows which zero page locations are free.

Safe locations for either BASIC are $6 to $9 ,
$1A to $1F

,
$EB to $EF, and

$F9 to $FF. There are others, but I would consult the manual.
Our small Applesoft interface routine is listed below and the machine

language code follows.

10 HGR: POKE- 16302,0
15 H=10 : POKE 24577,

H

20 TVERT = PDL(l) :IF TVERT >183
THEN TVERT = 183

25 POKE 24576, TVERT
30 CALL 24582
40 FOR DE = 1 TO 5: NEXT DE
45 POKE 24576, TVERT
50 CALL 24582
60 GOTO 20

SET GRAPHICS
SET HORIZONTAL POSITION
SET VERTICAL POSITION

WITH PADDLE

CALL DRAWING ROUTINE
SHORT DELAY
REFRESH VERTICAL POSITION
XDRAW SHIP
LOOP AGAIN

6006s
6009:
600C:

600D:

6010
6013
6015
6017
6019
601B
601D
601E
6021
6023
6026
6029
602B

1 *C0DE FOR APPLESOFT PADDLE INTERFACE
2 ORG $6000
3 TVERT DS 1

4 H0RIZ DS 1

5 DEPTH DS 1

6 LNGH DS 1

7 SLNGH DS 1

8 TEMP DS 1

9 HIRESL EQU $1A
10 HIRESH EQU HIRESL+$1
11 SSHPL EQU $1C
12 SSHPH EQU SSHPL+$1
13 MAIN CODE

20 43 60 14 START JSR SSETUP
20 0D 60 15 JSR SXDRAW
60 16 RTS

17 SUBROUTINES
18 SHIP DRAWING SUBROUTINE

AC 00 60 19 SXDRAW LDY TVERT ; PADDLE VALUE
20 2C 60 20 JSR GETADR
A2 00 21 LDX #$00 ;NEED 0 IN X REG. FOR INDEX
A1 1C 22 SXDRAW2 LDA (SSHPL, X) ;L0AD BYTE FROM SHAPE TABLE
51 1A 23 EOR (HIRESL), Y jEOR IT AGAINST SCREEN
91 1A 24 STA (HIRESL), Y ; STORE RESULT ON SCREEN
E6 1C 25 INC SSHPL ;NEXT BYTE IN SHAPE TABLE
C8 26 INY ;NEXT SCREEN POSITION IN ROW
CE 04 60 27 DEC SLNGH ; DECREMENT WIDTH
DO F2 28 BNE SXDRAW2 ; FINISHED WITH ROW?
EE 00 60 29 INC TVERT ; IF SO, INCREMENT TO NEXT Lit*
CE 02 60 30 DEC DEPTH ; DECREMENT ROW
DO E2 31 BNE SXDRAW ; FINISHED ALL ROWS?
60 32 RTS

136

602C
602F

:

6030
6033
6035
6038
603A
603D
6040
6042

6043
6045
6047
6049
604B
604D
6050
6052
6055
6057
605

A

605D
605E
6061
6064
6066
6069
606C
606E
6071
6074
6076
6079
607C
607E
6081
6084
6086
6089
608C
608E
6091
6094
6096
6099
609C
609E
60A1
60A4
60A6
60A9
60AC
60AE
60B1
60B4
60B6
60B9
60BC

33 *GETADR SUBROUTINE
B9 5E 60 34 GETADR LDA YVERTL, Y ;LOOK UP LO BYTE OF LINE
18 35
6D 01 60 36

CLC
ADC HORIZ ;ADD DISPLACEMENT INTO LINE

85 1A 37 STA HIRESL
B9 IE 61 38 LDA YVERTH, Y ;LOOK UP HI BYTE OF LINE
85 IB 39 STA HIRESH
AD 05 60 40 LDA TEMP
8D 04 60 41 STA SLNGH ; RESTORE VARIABLE
AO 00 42 LDY #$00
60 43

44
RTS

*SHIP SET UP SUBROUTINE
A9 DE 45 SSETUP LDA #<SHIP ;OCATION OF SHIP SHAPE TABLE
85 1C 46 STA SSHPL
A9 61 47 LDA #>SHIP
85 ID 48 STA SSHPH
A9 08 49 LDA #$08 ; DEPTH 8 LINES
8D 02 60 50 STA DEPTH
A9 09 51 LDA #$09 ; STARTING HORIZ POSITION
8D 01 60 52 STA HORIZ
A9 03 53 LDA #$03 ; SHIP 3 BYTES WIDE
8D 04 60 54 STA SLNGH
8D 05 60 55 STA TEMP
60 56
00 00 00
00 00 00
00 00 57 YVERTL

RTS

HEX 0000000000000000
80 80 80
80 80 80
80 80 58 HEX 8080808080808080
00 00 00
00 00 00
00 00 59 HEX 0000000000000000
80 80 80
80 80 80
80 80 60 HEX 8080808080808080
00 00 00
00 00 00
00 00 61 HEX 0000000000000000
80 80 80
80 80 80
80 80 62 HEX 8080808080808080
00 00 00
00 00 00
00 00 63 HEX 0000000000000000
80 80 80
80 80 80
80 80 64 HEX 8080808080808080
28 28 28

28 28 28
28 28 65 HEX 2828282828282828
A8 A8 A8
A8 A8 A8
A8 A8 66 HEX A8A8A8A8A8A8A8A8
28 28 28
28 28 28
28 28 67 HEX 2828282828282828
A8 A8 A8
A8 A8 A8
A8 A8 68 HEX A8A8A8A8A8A8A8A8

60BE: 28 28 28
60C1: 28 28 28
60C4: 28 28 69
60C6: A8 A8 A8
60C9: A8 A8 A8
60CC: A8 A8 70
60CE: 28 28 28
60D1: 28 28 28
60D4: 28 28 71
60D6: A8 A8 A8
60D9: A8 A8 A8
60DC: A8 A8 72
60DE: 50 50 50
60E1: 50 50 50
60E4: 50 50 73
60E6: DO DO DO
60E9: DO DO DO
60C: DO DO 74
60EE: 50 50 50
60F1

:

50 50 50
60F4: 50 50 75
60F6: DO DO DO
60F9: DO DO DO
60FC: DO DO 76
60FE: 50 50 50
6101: 50 50 50
6104: 50 50 77
6106: DO DO DO
6109: DO DO DO
610C: DO DO 78
61 OE: 50 50 50
6111: 50 50 50
6114: 50 50 79
6116: DO DO DO
6119: DO DO DO
611C: DO DO 80

81 *

61 IE: 20 24 28
6121: 2C 30 34
6124: 38 X 82 YVERTH
6126: 20 24 28
6129: 2C 30 34
612C: 38 3C 83
612E: 21 25 29
6131: 2D 31 35
6134: 39 3D 84
6136: 21 25 29
6139: 2D 31 35
613C: 39 3D 85
613E: 22 26 2A
6141: 2E 32 36
6144: 3A 3E 86
6146: 22 26 2A
6149: 2E 32 36
614C: 3A 3E 87
614E: 23 27 2B
6151: 2F 33 37
6154: 3B 3F 88
6156: 23 27 2B
6159: 2F 33 37

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 5050505050505050

HEX D0D0D0D0D0D0D0D0

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

138

615C: 3B 3F 89
615E: 20 24 28
6161: 2C 30 34
6164: 38 X 90
6166: 20 24 28

6169: 2C 30 34

616C: 38 X 91

616E: 21 25 29

6171: 2D 31 35

6174: 39 3D 92

6176: 21 25 29

6179: 2D 31 35
617C: 39 3D 93
617E: 22 26 2A

6181: 2E 32 36

6184: 3A 3E 94
6186: 22 26 2A

6189: 2E 32 36
618C: 3A 3E 95
618E: 23 27 2B
6191: 2F 33 37
6194: 3B 3F 96
6196: 23 27 2B

6199: 2F 33 37

619C: 3B 3F 97
619E: 20 24 28
61A1: 2C 30 34
61A4: 38 X 98
61A6: 20 24 28
61A9: 2C 30 34
61AC: 38 X 99
61AE: 21 25 29
61B1: 2D 31 35
61B4: 39 3D 100
61B6: 21 25 29
61B9: 2D 31 35
61BC: 39 3D 101
61BE: 22 26 2A

61C1: 2E 32 36
61C4: 3A 3E 102
61C6: 22 26 2A
61C9: 2E 32 36
6 ICC: 3A 3E 103
61CE: 23 27 2B
61D1 : 2F 33 37
61D4: 3B 3F 104
61D6: -23 27 2B

61D9: 2F 33 37

61DC: 3B 3F 105
61DE: 80 00 00
61E1 : 82 00 00
61E4: 82 00 106 SHIP
61E6: 00 8A 00
61E9: 00 AA D5
61EC: 80 AA 107
61EE: 95 82 AA
61F1: D5 8A A8
61F4: D5 AA 108

HEX 23272B2F33373B3F

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 2024282C3034383

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 8000008200008200

HEX 008A0000AAD580AA

HEX 9582AAD58AA8D5AA

—END ASSEMBLY- 502 BYTES

When raster or block shapes are plotted against a complex background by
EORing them to the screen, the shape is often difficult to discern. As we men-
tioned in our discussion of the OR function, if a shape is ORed to the screen
instead, the shape would be intact. However, this isn’t entirely true. The
background will affect the shape if either the shape has a window in it, or if true
color is always to be preserved. Ifwe had a red locomotive with a black windowm the cab and we ORed it against a blue background, the window would not
remain black, but would become blue. The color of the train is likely to shift to
white because pixels in both the even and odd columns will be activated. A
more effective solution would be to AND the complement of a white locomotive
shape with the background and then OR the red locomotive to the screen. (See
similar example, page 132.

Background can be saved when ORing a shape to the screen by saving the
bytes to a scratch table just before plotting our shape. This is done a byte at a
time in sequence with the shape plotting operation rather than as a seperate
subroutine. Then, when the shape is to be removed from the screen, it isn’tXDRAWn; instead, the original background is replotted from this scratch
table. I modified the last example to perform this technique and set the
background to a color in the Applesoft program so that you could observe the
effect. It might be more interesting to load a Hi-Res picture as a very busy
background. The code and flow chart are shown below.

140

IS DEPTH = 0?

10 HGR : POKE - 16302,0
12 HCOLOR= 1

13 HPLOT 100,100: CALL 62454
15 H = 10: POKE 24577,

H

20 TVERT = PDL (1): IF TVERT > 183 THEN TVERT = 183
25 POKE 24576, TVERT
30 CALL 24582
40 FOR DE = 1 TO 5: NEXT DE
45 POKE 24576, TVERT
50 CALL 24589
60 GOTO 20

1 *CODE FOR APPLESOFT PADDLE INTERFACE
2 WHILE SAVING BACKGROUND
3 ORG $6000
4 TVERT DS 1

5 HORIZ DS 1

6 DEPTH DS 1

7 LNGH DS 1

8 SLNGH DS 1

9 TEMP DS 1

10 HIRESL EQU $1A
11 HIRESH EQU HIRESL+$1
12 SSHPL EQU $1C
13 SSHPH EQU SSHPL+$1
14 BACKL EQU $1E
15 BACKH EQU BACKL+$

1

16 MAIN CODE
6006: 20 6D 60 17 START JSR SSETUP
6009: 20 14 60 18 JSR SDRAW ;DRAW SHIP WHILE SAVING BACKGROUND
600C: 60 19 RTS
600D: 20 6D 60 20 JSR SSETUP
6010: 20 39 60 21 JSR BKDRAW REPLACE BACKGROUND
6013: 60 22 RTS

23 SUBROUTINES
6014: AC 00 60 24 SDRAW LDY TVERT

; PADDLE VALUE
6017: 20 56 60 25 JSR GETADR
601A: A2 00 26 LDX #$00 NEED 0 IN X REG. FOR INDEX
601C: B1 1A 27 SDRAW2 LDA (HIRESL),

Y

LOAD BYTE ON SCREEN
601E: 81 IE 28 STA (BACKL, X) STORE BACKGROUND TABLE
6020: A1 1C 29 LDA (SSHPL, X) LOAD BYTE FROM SHIP SHAPE TABLE
6022: 11 1A 30 ORA (HIRESL),

Y

ORA WITH SCREEN
6024: 91 1A 31 STA (HIRESL),

Y

STOR RESULT ON SCREEN
6026: E6 IE 32 INC BACKL NEXT BYTE IN BACKGROUND TABLE
6028: E6 1C 33 INC SSHPL NEXT BYTE IN SHIP TABLE
602A: C8 34 INY NEXT SCREEN POS. IN ROW
602B: CE 04 60 35 DEC SLNGH DECREMENT WIDTH
602E: DO EC 36 BNE SDRAW2 FINISHED WITH ROW?
6030: EE 00 60 37 INC TVERT IF SO, INCREMENT TO NEXT LINE
6033: CE 02 60 38 DEC DEPTH DECREMENT DEPTH
6036: DO DC 39 BNE SDRAW FINISHED ALL ROWS?
6038: 60 40 RTS YES, END ROUTINE

142

6039: AC 00 60 41 BKDRAW LDY TVERT ; PADDLE VALUE

603C: 20 56 60 42 JSR GETADR

603F: A2 00 43 LDX #$00

6041: A1 IE 44 BKDRAW2 LDA (BACKL, X) ;L0AD BYTE FROM BACKGROUND TABLE

6043: 91 1A 45 STA (HIRESL) ,Y ; STORE ON HIRES SCREEN

6045: E6 IE 46 INC BACKL ;NEXT BYTE IN TABLE

6047: C8 47 INY ;NEXT SCREEN POSITION IN ROW

6048: CE 04 60 48 DEC SLNGH

604B: DO F4 49 BNE BKDRAW2

604D: EE 00 60 50 INC TVERT

6050: CE 02 60 51 DEC DEPTH

6053: DO E4 52 BNE BKDRAW

6055: 60 53 RTS

6056: B9 90 60 54 GETADR LDA YVERTL,

Y

; LOOK UP LO BYTE OF LINE

6059: 18 55 CLC
605A: 6D 01 60 56 ADC HORIZ ; ADD DISPLACEMENT INTO LINE

605D: 85 1A 57 STA HIRESL
605F: B9 50 61 58 LDA YVERTH,

Y

; LOOK UP HI BYTE OF LINE

6062: 85 IB 59 STA HIRESH

6064: AD 05 60 60 LDA TEMP

6067: 8D 04 60 61 STA SLNGH ; RESTORE VARIABLE

606A: AO 00 62 LDY #$00
606C: 60 63 RTS

64 SHIP SET UP

606D: A9 10 65 SSETUP LDA #<SHIP ; LOCATION OF SHIP SHAPE TABLE

606F: 85 1C 66 STA SSHPL

6071: A9 62 67 LDA #>SHIP

6073: 85 ID 68 STA SSHPH

6075: A9 28 69 LDA #<BACKGRD ; LOCATION OF BACKGROUND TABLE

6077: 85 IE 70 STA BACKL

6079: A9 62 71 LDA #>BACKGRD

607B: 85 IF 72 STA BACKH

607D: A9 08 73 LDA #$08 ; DEPTH OF SHAPE

607F: 8D 02 60 74 STA DEPTH

6082: A9 09 75 LDA #$09 ; STARTING HORIZ. POSITION

6084: 8D 01 60 76 STA HORIZ

6087:; A9 03 77 LDA #$03 ;SHIP 3 BYTES WIDE

6089: 8D 04 60 78 STA SLNGH

608C: 8D 05 60 79 STA TEMP

608F: 60 80 RTS

6090: 00 00 00
6093: 00 00 00

6096: 00 00 81 YVERTL HEX 0000000000000000

6098: 80 80 80

609B: 80 80 80
609E: 80 80 82 HEX 8080808080808080

60A0: 00 00 00
60A3: 00 00 00
60A6 00 00 83 HEX 0000000000000000

60A8: 80 80 80
60AB 80 80 80
60AE 80 80 84 HEX 8080808080808080

60B0 00 00 00

60B3 00 00 00
60B6 00 00 85 HEX 0000000000000000

60B8 80 80 80

60BB 80 80 80
60BE 80 80 86 HEX 8080808080808080
60C0 00 00 00
60C3 00 00 00

HEX 000000000000000060C6: 00 00 87
60C8: 80 80 80
60CB: 80 80 80
60CE: 80 80 88
60D0: 28 28 28
60D3: 28 28 28
60D6: 28 28 89
60D8: A8 A8 A8
60DB: A8 A8 A8
60DE: A8 A8 90
60EO: 28 28 28
60E3: 28 28 28
60E6: 28 28 91
60E8: A8 A8 A8
60EB: A8 A8 A8
60EE: A8 A8 92
60F0: 28 28 28
60F3: 28 28 28
60F6: 28 28 93
60F8: A8 A8 A8
60FB: A8 A8 A8
60FE: A8 A8 94
6100: 28 28 28
6103: 28 28 28
6106: 28 28 95
6108: A8 A8 A8
610B: A8 A8 A8
610E: A8 A8 96
6110: 50 50 50
6113: 50 50 50
6116: 50 50 97
6118: DO DO DO
611B: DO DO DO
611E: DO DO 98
6120: 50 50 50
6123: 50 50 50
6126: 50 50 99
6128: DO DO DO
612B: DO DO DO
612E: DO DO 100
6130: 50 50 50
6133: 50 50 50
6136: 50 50 101
6138: DO DO DO
613B: DO DO DO
613E: DO DO 102
6140: 50 50 50
6143: 50 50 50
6146: 50 50 103
6148: DO DO DO
614B: DO DO DO
614E: DO DO 104

105 *

6150: 20 24 28
6153: 2C 30 34
6156: 38 3C 106 YVERTH
6158: 20 24 28
615B: 2C 30 34
615E: 38 3C 107
6160: 21 25 29

HEX 8080808080808080

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 2024282C3034383C

HEX 2024282C3034383C

144

6163: 2D 31 35

6166: 39 3D 108 HEX 2125292D3135393D

6168: 21 25 29

616B: 2D 31 35

616E: 39 3D 109 HEX 2125292D3135393D

6170: 22 26 2A

6173: 2E 32 36

6176: 3A 3E 110 HEX 22262A2E32363A3E

6178: 22 26 2A

617B: 2E 32 36

617E: 3A 3E 111 HEX 22262A2E32363A3E

6180: 23 27 2B

6183: 2F 33 37

6186: 3B 3F 112 HEX 23272B2F33373B3F

6188: 23 27 2B

618B: 2F 33 37

618E: 3B 3F 113 HEX 23272B2F33373B3F

6190: 20 24 28

6193: 2C 30 34
6196: 38 X 114 HEX 2024282C3034383C

6198: 20 24 28

619B: 2C 30 34

619E: 38 X 115 HEX 2024282C3034383C

61A0: 21 25 29

61A3: 2D 31 35
61A6: 39 3D 116 HEX 2125292D3135393D

61A8: 21 25 29

61AB: 2D 31 35

61AE: 39 3D 117 HEX 21 25292 D3135393D

61B0: 22 26 2A

61B3: 2E 32 36

61B6: 3A 3E 118 HEX 22262A2E32363A3E

61B8: 22 26 2A

6 IBB: 2E 32 36
61BE: 3A 3E 119 HEX 22262A2E32363A3E

61C0: 23 27 2B

61C3: 2F 33 37

61C6: 3B 3F 120 HEX 23272B2F33373B3F

61C8: 23 27 2B

61CB: 2F 33 37

61CE: 3B 3F 121 HEX 23272B2F33373B3F

61D0: 20 24 28

61D3: 2C 30 34

61D6: 38 X 122 HEX 2024282C3034383C

61 D8: 20 24 28

61DB: 2C 30 34

6 IDE: 38 X 123 HEX 2024282C3034383C

61E0: 21 25 29

61E3: 2D 31 35
61E6: 39 3D 124 HEX 2125292D3135393D

61E8: 21 25 29

61EB: 2D 31 35

61EE: 39 3D 125 HEX 2125292D3135393D

61F0: 22 26 2A

61F3: 2E 32 36

61F6: 3A 3E 126 HEX 22262A2E32363A3E

61F8: 22 26 2A

61FB: 2E 32 36

61FE: 3A 3E 127 HEX 22262A2E32363A3E

6200: 23 27 2B

6203; 2F 33 37
6206; 3B 3F 128
6208; 23 27 2B
620B; 2F 33 37
620E; 3B 3F 129
6210: 80 00 00
6213: 82 00 00
6216: 82 00 130 SHIP
6218: 00 8A 00
621B: 00 A D5
621E: 80 AA 131
6220: 95 82 AA
6223: D5 8A A8
6226: D5 AA 132

133 BACK

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 8000008200008200

HEX 008A0000AAD580AA

HEX 9582AAD58AA8D5A/
DS 24

—END ASSEMBLY-

ERRORS: 0

576 BYTES

CHAPTER 6

ARCADE GRAPHICS

INTRODUCTION

Arcade game animation uses many of the graphics techniques introduced in

the previous chapter. Their requirement for high frame rates, coupled with
smooth yet detailed animation, necessitates raster shape tables using their

inherent high speed drawing routines. Yet, to produce quality games requires

game designers to pay particular attention to the smallest programming
details.

The fundamentals of any arcade game, in the broad sense, are easy to grasp.

It is the details that elude the average programmer. While it is obvious that any
object that can be moved must also be controlled, it isn’t obvious how that

motion is programmed in machine language.

This chapter and the next will discuss the three major types of arcade games
and the algorithms that make them work. First, there is the Invaders-type
game, wherein a movable gun in the horizontal plane defends against attackers

from above. Second, there is the fully maneuverable spaceship from the Space
War and Asteroid-type games. These ships fly or float freely in both the X and
Y axis. Finally, there are the games that simulate horizontal or vertical motion
by scrolling the background. These games have ships that are usually

maneuverable in the non -scrolling axis only. Apple games like Pegasus II and
Phantoms Five fall into this category.

There are numerous details to consider in game design, such as paddle con-
trol, bullets Firing and bombs dropping. A game must also include a scorekeep-

ing device for determining a winner, and an explosion subroutine for ridding

the screen of losers. And, sometimes, page-flipping techniques are needed to

smooth the flickering effects of complex animation. It is hoped that by my first

flow charting these routines, then presenting and explaining commented
machine language subroutines, you will be able to use these techniques in your
own games. And for those who need an example of a working game, many of

these routines are combined in a functioning yet unfinished arcade game.

PADDLE ROUTINE

We previously controlled our moveable plane through an Applesoft inter-

face. While it is easy to access the paddle routine directly from machine
language, a more realistic subroutine that would prevent almost instantaneous

jumps in position needs to be developed. It is the purpose of this section to

develop a useable paddle subroutine.

147

The Hi-Res screen’s vertical axis ranges only from 0-191. Paddle values on
the other hand, range from 0-255. An attempt to plot a shape on any horizontal“edln§ 191 would result in unpredictable consequences, because theYVERT tables for the screen address of any line contains only 192 values
Your program might store the shape anywhere in memory, depending on what
values might be stored in the locations following our YVERT tables
Therefore, the maximum paddle value can be 191 minus the shape’s depth. In
the case of our ship, which is eight lines deep, you must clip the paddle value to

Bottom Screen = 191 $BF

A paddle value is read by accessing a monitor subroutine called PREAD,
located at $FB1E. The monitor reads the paddles by writing a strobe to start
the selected paddle timer, then increments the Y register until the timer goes
off. The paddle value is returned in the Y register. You access PREAD by plac-
ing the selected paddle number (0-3) in the X-register. You should be aware
that what was previously stored in the Accumulator is destroyed when calline
PREAD. 5

The following paddle subroutine prevents instantaneous jumps of the
plane s position by rapid paddle movement. It accomplishes this by adjusting
VERT, the ship s vertical position, rather than storing the paddle position
(PDL) directly as VERT . This adjustment is based on the relationship of PDL
to VERT.

There is a certain maximum paddle-driven movement that is desirable in
any game. If the movement, in this case, is set to ten units per frame and the
animation was twenty frames per second, then the plane will require approx-
imately one second to move from top to bottom. Slower movement factors will
take more time. The speed constant is subjective, and is determined by what
you think is a suitable and a controllable speed.
VERT is initialized at 90 decimal to position the ship initially at the center of

the screen. If the paddle value is less than VERT, it subtracts ten from VERT
and, if greater, adds ten. There are other safeguards to make sure VERT is
greater than zero and less than the maximum paddle value, 183 decimal.
There is another test to make sure that VERT actually homes in on the PDL

value. Let us assume that VERT was at 70 and the paddle (PDL) is set to 63.
Since PDL is less than VERT, ten is subtracted from VERT. VERT is now
60, which is beyond, or less than PDL. But if VERT is less than PDL, it sets

148

VERT = PDL so that the resulting VERT position is exactly that of the

paddle value. The same type of test is performed if PDL is greater than VERT,
and VERT is homing in on the paddle value from a higher value.

CYCLE PDL VERT CYCLE PDL VERT
0 90 0 90
1 63 80 OR 1 112 100

2 63 70 2 112 100

3 63 63 3 112 112

The flow chart is shown below.

Rather than proceed with the development of what is to become a very com-
plex game using our ship, I would like to digress to another paddle routine.

This one controls a moveable gun turret in the horizontal plane. It is used quite

frequently in most Invaders-type games.

The screen range on the horizontal axis is 0-279. Our paddle range is, as

usual, limited to 0-255. In Applesoft, it was easy to multiply by 1.1 to obtain

149

the proper range. However, in machine language the multiplication and divi-
sion routines are too complex, and require numerous machine cycles to
execute. Besides, they return the result as two byte values, which means that
all of our adding and subtracting would require two byte operations.

It is much easier to accept the fact that the right 10% of the screen is

unusable or can’t be reached by paddles, unless we center the screen by
adjusting the horizontal offsets. Actually, if our gun is large, we can use part of
this space without adjustment. Take the gun turret illustrated below. It is 14
pixels, or two bytes wide.

PIXEL I

GAP -H

255 269 279

|-6— 14 PIXELS -*\

When the paddle value is at zero, the gun plots between 0-13 on the horizon-
tal axis, and when the paddle is at 255, the gun plots between 255 and 269.
That leaves only a ten pixel gap, which is hardly noticeable.

In order to use the paddle routine already developed for the vertical axis, it

must be modified. The paddle s full range is needed, so clipping is removed
just after the paddle is read. Instead, we must place a test in the code to prevent
it from incrementing past $FF

(255 decimal
) as it homes in on the actual

paddle value. In this case, we have slowed the turret’s movement to five units
per animation cycle. Again, the value of five is based on the frame rate, and
what appears to be a reasonable movement rate on the screen.

After testing the various possibilites of whether the paddle is set to a value
greater than PHORIZ (the horizontal position) you must prevent it from
adding five to PHORIZ ifPHORIZ > 250. In this case, the PADDLE value is

251 to 255, and PHORIZ is set equal to the PADDLE.

CYCLE PADDLE PHORIZ
2 253 240
1 253 245
2 253 250
3 253 253

The following chart and corresponding code is shown below.

39 *READ PADDLE #1
6028: A2 01 40 RPDL LDX #$01
602A: 20 IE FB 41 JSR PREAD
602D: 8C 07 60 42 SKIPP STY PDL
6030: 98 43 TYA
6031: CD OB 60 44 CMP PHORIZ
6034: BO IE 45 BGE PADDLE3
6036: AD OB 60 46 LDA PHORIZ
6039: 38 47 SEC
603A: E9 05 48 SBC #$05
603C: BO 08 49 BGE PADDLE1
603E: A9 00 50 LDA #$00
6040: 8D OB 60 51 STA PHORIZ
6043: 8D OC 60 52 STA TPHORIZ
6046: CD 07 60 53 PADDLE

1

CMP PDL
6049: BO 03 54 BGE PADDLE2
604B: AD 07 60 55 LDA PDL
604E: 8D OB 60 56 PADDLE2 STA PHORIZ
6051: 4C 71 60 57 JMP PADDLE6
6054: CD OB 60 58 PADDLE3 CMP PHORIZ
6057: FO 12 59 BEQ PADDLE4
6059: AD OB 60 60 LDA PHORIZ
605C: C9 FA 61 CMP #$FA
605E: BO OB 62 BGE PADDLE4
6060: AD OB 60 63 LDA PHORIZ
6063: 18 64 CLC

;PADDLE<HORIZ POS THEN SUBTRACT 5

jMAKE SURE =>0

; DON'T WANT TO GO PAST PADDLE POS

; PADDLE>PHORIZ POS THEN ADD 5

j IS PH0RIZ>250

151

; DON'T WANT TO GO PAST PADDLE POS

6064: 69 05 65 ADC #$05
6066: CD 07 60 66 CMP PDL
6069: 90 03 67 BLT PADDLE5
606B: AD 07 60 68 PADDLE4 LDA PDL
606E: 8D OB 60 69 PADDLE5 STA PHORIZ
6071: 8D OC 60 70 PADDLE6 STA TPHORIZ

PADDLE CROSSTALK

Many readers will attempt at some future time to combine two paddle read
routines together to control a ship, or a gun crosshair with a joystick. They will
be dismayed to learn that the paddle values don’t read properly. This is called
paddle crosstalk.

When a paddle trigger is strobed, all the timers start. If the first paddle that
you read has a low value, it will return quickly from PREAD with a paddle
value. But the timers are still counting. If you immediately call PREAD again,
the timers aren’t restarted at zero, so that you may see a value from the first

paddle trigger instead of the second. The solution is to wait a sufficient time
before reading the second paddle. How long is sufficient? Not more than 255
machine cycles is needed. It is best to space your paddle reads with other code
in between.

An alternate solution is to read two paddles simultaneously by triggering
both strobes (or timers) together. Since the code takes longer to execute while
the paddle timers count down, the full paddle range can not be expected. The
code shown below is suitable for joystick control, but only has a range of 40 to
127. Clever programmers will either adjust these values or offset them to suit
their needs.

*THIS DUAL PADDLE READ RETURNS
VALUES AS FOLLOWS
*PADDLE(0) ,PADDLE(1

)

*

*126,127 44,127
*

! f

*
! i

*
! i

*
! i

*
! i

*
! i

*126,47 44,47
*

0RG $300
ZERO DS 1

ONE DS 1

LDX #$00
STX ONE
STX ZERO
LDX #$7F
LDA $C070 ; STARTS BOTH TIMERS

1

2

3

4

5

6

7

8

9
10
11

12

13

14

15

16
0302: A2 00 17
0304: 8E 01 03 18
0307: 8E 00 03 19
030A: A2 7F 20
030C: AD 70 CO 21

152

030F: AD 64 CO 22 LOOP LDA $C064
0312: 29 80 23 AND #$80
0314: 0A 24 ASL
0315: 2A 25 R0L
0316: 6D 00 03 26 ADC ZERO
0319: 8D 00 03 27 STA ZERO
031C: AD 65 CO 28 LDA $C065
031F: 29 80 29 AND #$80
0321: 0A 30 ASL
0322: 2A 31 R0L
0323: 6D 01 03 32 ADC ONE
0326: 8D 01 03 33 STA ONE
0329: CA 34 DEX
03 2A: DO E3 35 BNE LOOP
032C: A9 7F 36 LDA #$7F
03 2E: 38 37 SEC
032F: ED 00 03 38 SBC ZERO
0332: 8D 00 03 39 STA ZERO
0335: A9 7F 40 LDA #$7F
0337: 38 41 SEC
0338: ED 01 03 42 SBC ONE
033B: 8D 01 03 43 STA ONE
033E: 60 44 RTS

—END ASSEMBLY-

; PADDLE 0 TIMER

; PADDLE 1 TIMER

Many game designers choose keyboard controls instead ofjoystick controls.
There are two reasons for this. The first is speed. Obviously, a test for a specific

keypress only takes three instructions. A paddle, on the other hand, can take as
long as 255 machine cycles. Two paddles (joystick) take nearly twice as long if

you avoid crosstalk. There are many games where reading two paddles slows
the program down. Several games resort to reading one paddle direction on
alternate frames, and the other on the opposite frame; however, the controls
seem sluggish. The only sensible solution is to write fast, efficient code, so that
reading paddles does not affect the game’s speed.

The second reason for keyboard control is that, until recently, few computer
owners had joysticks. If the latter is the reason, the designer should offer a
choice of control modes. Certainly playability is more important than
monetary gain from a wider audience.

153

DROPPING BOMBS AND SHOOTING BULLETS

Simulating a bomb drop realistically involves some knowledge ofhow a body
in motion reacts to a constant force; in this case, gravity. The physics of a body
in motion requires advanced mathematics, mainly calculus. But calculus
actually involves the summation of many bits and pieces of a body’s velocity
and acceleration to determine the actual distance an object travels. The com-
puter, fortunately, automatically divides our time frame into small units, or
animation frames, wherein the force vectors can be displayed as direction vec-
tors.

Let s examine an object in simple linear motion. The object is initially at
rest. It is then given a horizontal velocity of one unit to the left. Thus, the
velocity is +1 unit/time frame. During each animation frame, the object
moves + 1 units to the right.

An object’s direction of travel and its magnitude is represented by a line seg-
ment called a vector. An object’s velocity vector always points in the direction
of travel. Our object shown below has a velocity of + 1 units/ time frame, so
that the velocity is pointing to the right. Since the velocity vector is to the right,

the object moves to the right.

2 3 4 5 6

Frame #4 FRAMES

154

VELOCITY

This can be formalized into equations for each of the

two screen directions X and Y.

VX = +1
X =X + VX

Likewise

velocity is constant in X direction

new position is the old position plus

the change in position (velocity).

VY =0 velocity is stationary in Y direction.

Y =Y + VY

Therefore, the object remains stationary in the Y direction.

If a force were suddenly applied to our moving object so that the velocity in
the X direction were to increase by one with each time frame, the distances
traveled would grow substantially.

TIME VELOCITY POSITION (distance)

0 0 0
1 1 1

2 2 3

3 3 6 VX = VX +

1

4 4 10 X = X + VX
5 5 15

6 6 21

5 10 15 20
X POSITION

155

This driving force that speeds up our object is called acceleration (V = V +
A

) . The acceleration in the previous example was + 1 units/frame. The
acceleration in space games is a rocket’s thrust and, for falling bombs, it is

gravity. To simplify things, when working with a falling bomb, we will neglect
variables like wind resistance, and assume that the bomb has a small forward
velocity equal to that of the plane. The plot of the trajectory of a falling bomb is

shown below. The trajectory forms a curve that is often called “parabolic”.
You should note that although the velocity in the X direction remains constant,
the velocity in the Y direction (VY) grows larger with time. It grows larger
because gravity accelerates the object constantly in the downward direction.
This same effect can be observed by dropping a ball from the second or third
story of a building. At first, the ball falls slowly, but then it begins falling faster.

Observers at ground level will note an accelerated moving ball just before it

bounces.

The velocity of the falling bomb has two components represented by velocity
vectors - one in the X direction and the other in the Y direction. These two
velocity vectors can be graphically added together to form a total velocity
vector. The summation of the two vectors determines the resultant direction of
an object s motion for each animation frame. Since the VY vector grows larger
with each frame, the total velocity vector begins to point downward. Eventual-
ly, the bomb will be falling almost straight down. Thus:

VX = CONST
VY = VY + GRAVITY

l

l

X

156

If you are programming the motion of a falling bomb, the equations or
algorithm are as follows.

VX = CONST X - X + VX
VY = VY + GRAVITY Y = Y + VY

For all practical purposes, a gravity constant of 3 to 5 will produce realistic

curves on the Apple’s Hi-Res screen, but this, again, like our choice of a con-
stant for paddle movement, is dependent on factors like the animation frame
rate and the scale of other objects on the screen.

The trajectories of bullets and artillery shells are another useful feature in
games. Bullets in games like Apple Invaders and Galaxian travel straight up-
wards on the screen.

X = 0

VY = NEGATIVE CONSTANT
so that

X = CONST
Y = Y +(-VY)

Bullets that travel diagonally, but at a constant velocity in

the direction shown, have a VY that is negative and a VX
that is positive. The velocity vector determines the direc-

tion of travel.

VX = POSITIVE CONSTANT
VY = NEGATIVE CONSTANT

so that

X = X + VX
Y = Y +(- VY)

Our bullet is fired from a movable gun base at the bottom of the screen. Its

location, in relation to the gun barrel, is shown in the design at the right. The
bullet’s shape is eight units tall by four units

wide and, like the gun base, uses seven
different offset shape tables. Although the

bullet is white, it is easier to use the same draw-
ing routine to move it in conjunction with the

gun base.

BVERT

8 Lines

Bullet

PHORIZ,

157

The bullet’s horizontal velocity is VX = 0 and its vertical velocity is VY =
-8. Thus, X = X + VX, or X = const

,
and Y = Y - VY. The bullet’s

vertical position is defined as BVERT. Therefore, BVERT = BVERT -8 for

each frame. If the bullet’s horizontal position is to remain constant once it is

fired, it must be set free of PHORIZ (the gun’s horizontal position), because
its value would undoubtedly change if the gun turret moves after the bullet is

fired. The bullet’s horizontal position, BPHORIZ, is set equal to PHORIZ
when the gun fires, and is used to determine the horizontal offset into the
screen line while it plots the bullet. The value is also used to index into the
XOFF table, which in turn acts as an index to the proper shape table when the
bullet is plotted on the screen.

The bullet travels further toward the top of the screen during each screen
frame. Notice that it travels exactly eight lines upwards per cycle. This allows
us to begin drawing at the start of one of the 24 eight line subgroups.
The code also prevents you from firing more than one bullet at a time. When

a bullet is on the screen, a flag called BON (short for “bullet on”) is set to pre-
vent you from firing again. There is more than a casual reason for doing this. If

more than one bullet were fired at one time, you would need to keep track of
each bullet’s position separately. While two bullets might be manageable, a
large number would involve storing the position values into tables, then access-
ing them in sequence during the bullet setup routine.

A flow chart of the algorithm and the code is shown below.

158

195 *BULLET SETUP
616D : AD OD 60 196 BSETUP LDA BHORIZ
6170 : 8D OF 60 197 STA HORIZ
6173 : AC OE 60 198 LDY BPHORIZ
6176 : BE 7C 64 199 LDX XOFF,

Y

-.INDEX TO WHICH SHAPE TABLE
6179 : BD A2 65 200 LDA BSHPLO,

X

; INDEX TO GET LO BYTE OF BOMB -
201

; SHAPE TABLE
617C : 85 50 202 STA SHPL
617E : A9 67 203 LDA #>BSHAPES ;GET HI BYTE OF SHAPE
6180 : 85 51 204 STA SHPH
6182 : A9 02 205 LDA #$02
6184 : 8D 13 60 206 STA SLNGH
6187 : 8D 08 60 207 STA TEMP
618A : A9 07 208 LDA #$07 ; SHAPE 7 LINES DEEP
618C : 8D 12 60 209 STA DEPTH
618F s AD 15 60 210 LDA BVERT
6192 : 8D OA 60 211 STA TVERT
6195 : 60 212 RTS

213 BULLET SUBROUTINE
6196 AD 16 60 214 BULLET LDA BON ;TEST BULLET ON SCREEN
6199 C9 01 215 CMP #$01
619B BO 27 216 BGE BULUPD
619D AD 62 CO 217 LDA $C062

; NEG BUTTON PRESSED
61AO 30 03 218 BMI FIRE1
61A2 4C E3 61 219 JMP NOSHOOT
61A5 A9 A8 220 FIRE1 LDA #$A8
61A7

;

8D 15 60 221 STA BVERT
61AA:: AC OB 60 222 LDY PHORIZ
61AD;: 8C OE 60 223 STY BPHORIZ ; BULLET HORIZ POS CONSTANT AT -

224
5 INITIAL FIRING P0SITI0N(0-255)

61B0 B9 64 63 225 LDA XBASE,

Y

;FIND HOR BYTE OFFSET
61B3 8D OD 60 226 STA BHORIZ

; (CONSTANT DURING VERTICAL TRAVEL)
61B6 20 6D 61 227 JSR BSETUP
61B9 20 A8 60 228 JSR GDRAW
61BC A9 01 229 LDA #$01
61BE 8D 16 60 230 STA BON ;SET BULLET ON SCREEN FLAG
61C1 4C E3 61 231 JMP NOSHOOT
61C4 20 6D 61 232 BULUPD JSR BSETUP
61C7 20 A8 60 233 JSR GDRAW
61CA 38 234 SEC
61CB AD 15 60 235 LDA BVERT
6ICE E9 08 236 SBC #$08
61D0 8D 15 60 237 STA BVERT ;THE CARRY FLAG IS SET IF POS
61D3 BO 08 238 BCS SKIP
61D5 A9 00 239 LDA #$00 iSET BULLET DEAD FLAG
61D7 8D 16 60 240 STA BON
6IDA 4C E3 61 241 JMP NOSHOOT
61DD 20 6D 61 242 SKIP JSR BSETUP
61E0 20 A8 60 243 JSR GDRAW
61E3 60 244 NOSHOOT RTS

If you consider a bullet that is traveling diagonally upwards and to the right,

and allow gravity to take effect, then the trajectory resembles that of an artillery

shell.

The gravity vector tends to bend our velocity vector so that it no longer

travels at its initial 45 degree angle. By the time our bullet reaches the peak of

its flight, the gravity vector has incrementally subtracted our vertical velocity

vector to zero. At that point, there is only the horizontal velocity component.
Since gravity affects our bullet at every time increment, it soon causes our
velocity vector to have a negative vertical component. The bullet then begins to

fall.

VY = VY + (-G) Y = Y + VY
VX = CONST X = X + VX

Once you understand the vector concept of how an object falls, the bomb
drop routine becomes elementary. The bomb must fall from the center of our
plane because, by design, bomb bays are located at the plane’s center of gravi-

ty. Since the tail of our plane is the vertical paddle position (VERT) and the
plane is eight lines deep, the first available plotting position beneath the plane
is at (VERT + 9).

160

The bomb can be defined by the following shape table.

07

?E

07

OFFSET

9 A B C D

ACCEL = 5

VY = VY + ACCEL
YB = YB + VY

CYCLE VY YB OFFSET

1 0 0 A
2 5 5 B
3 10 15 C
4 15 30 D
5 20 50 E
6 25 75 F

E

I

I

1

To simplify the graphics, it is easier to move the bomb horizontally one byte
(or seven pixels) at a time. Consequently, with the bomb plotted in white, the
even - odd offset color problems vanish. The flowchart and code follow.

161

bomb

162

607
608

6489: AD 61 CO 609
648C: 30 03 610
648E: 4C BD 64 611
6491: AD 1A 60 612
6494: C9 01 613
6496: BO 2A 614
6498: AD OC 60 615
649B: 18 616
649C: 69 09 617
649E: 8D 16 60 618
64A1 : 8D 17 60 619
64A4: A9 OA 620
64A6: 8D 19 60 621
64A9: A9 00 622
64AB: 8D 18 60 623
64AE: A9 01 624
64B0: 8D 1A 60 625
64B3: 8D IB 60 626
64B6: 20 45 64 627
64B9: 20 59 64 628
64BC: 60 629
64BD: AD 1 A 60 630
64C0: FO 34 631
64C2: AD 18 60 632
64C5: 18 633
64C6: 69 05 634
64C8: 8D 18 60 635
64CB: 6D 16 60 636
64CE: 8D 17 60 637
64D1 : 8D 16 60 638
64D4: AD 19 60 639
64D7: 69 01 640
64D9: 8D 19 60 641

642
64DC: AD 16 60 643
64DF: C9 BO 644
64E1 : 90 OD 645
64E3: A9 BO 646
64E5: 8D 16 60 647
64E8: 8D 17 60 648
64EB: A9 00 649
64ED: 8D IB 60 650
64FO: 20 45 64 651
64F3: 20 59 64 652
64F6: 60 653

654
64F7: AD 1A 60 655
64FA: FO 16 656
64FC: 20 45 64 657
64FF: AD 16 60 658
6502: 8D 17 60 659
6505: 20 70 64 660
6508: AD IB 60 661
650B: DO 05 662
650D: A9 00 663
650F: 8D 1A 60 664
6512: 60 665

»BOMB SUBROUTINE

BOMB LDA $C061
BMI B0MB1
JMP NODROP

B0MB1 LDA BMLOCK
CMP #$01
BGE FALLIN

DROP LDA VERT
CLC
ADC #$09
STA BVERT
STA TBVERT
LDA #$0A
STA BHORIZ
LDA #$00
STA BVELY
LDA #$01
STA BMLOCK
STA TBMLOCK
JSR BSET
JSR BDRAW
RTS

NODROP LDA BMLOCK
BEQ BOMB3

FALLIN LDA BVELY
CLC
ADC #$05
STA BVELY
ADC BVERT
STA TBVERT
STA BVERT
LDA BHORIZ
ADC #$01
STA BHORIZ

*TEMP DETECT FOR BOMB
LDA BVERT
CMP #$B0
BLT B0MB2
LDA #$B0
STA BVERT
STA TBVERT
LDA #$00
STA TBMLOCK

B0MB2 JSR BSET
JSR BDRAW

B0MB3 RTS
•"BOMB XDRAW
BOMBX LDA BMLOCK

BEQ BOMBX

1

JSR BSET
LDA BVERT
STA TBVERT
JSR BXDRAW
LDA TBMLOCK
BNE BOMBX

1

LDA #$00
STA BMLOCK

B0MBX1 RTS

;NEG IF BUTTON PRESSED

; IS BOMB STILL FALLING?
; YES, GOTO FALLIN

; INITIAL POSITION OF BOMB

; STARTING HORIZ POSITION

; INITIAL VERTICAL VELOCITY

; RESET TO ON
; RESET END OF FALL TO OFF

;DRAW BOMB

; IS BOMB STILL FALLING

I ADD ACCELERATION CONSTANT
;NEW VERTICAL VELOCITY

; BOMB'S NEW VERTICAL POSITION

; BOMB ' S HORIZ. VELOCITY (CONSTANT

)

; BOMB'S NEW HORIZ. POSITION
LANDING

; BOTTOM SCREEN?
; NO! THEN B0MB2

;SET END OF BOMB FALL FLAG

5 IS BOMB STILL FALLING? (1=YES)
;SKIP IF 0

;XDRAW BOMB

; RESET BOMB FALLING TO OFF

163

574 ^DRAWING ROUTINES FOR BOMB
575 *

6445: A9 EF 576 BSET LDA #<SHB0MB ; ADDRESS BOMB SHAPE
6447: 85 56 577 STA B0MBL
6449: A9 68 578 LDA #>SHB0MB
644B: 85 57 579 STA B0MBH
644D: AD 19 60 580 LDA BH0RIZ ; BOMB'S H0RIZ. POSITION
6450: 8D 0E 60 581 STA H0RIZ
6453: A9 03 582 LDA #$03
6455: 8D 11 60 583 STA DEPTH
6458: 60 584 RTS
6459: AC 17 60 585 BDRAW LDY TBVERT ;B0MB VERT P0S
645C: 20 1C 63 586 JSR GETADR
645F: A2 00 587 LDX #$00
6461: A1 56 588 LDA (B0MBL , X) ;GET ADDRESS OF BOMB SHAPE
6463: 91 26 589 STA (HIRESL) ,Y ; PLOT
6465: EE 17 60 590 INC TBVERT
6468: E6 56 591 INC B0MBL
646A: CE 11 60 592 DEC DEPTH
646D: DO EA 593 BNE BDRAW
646F: 60 594 RTS
6470: AC 17 60 595 BXDRAW LDY TBVERT
6473: 20 1C 63 596 JSR GETADR
6476: A2 00 597 LDX #$00
6478: A1 56 598 LDA (B0MBL , X

)

647A: 51 26 599 EOR (HIRESL), Y
647C: 91 26 600 STA (HIRESL),

Y

647E: EE 17 60 601 INC TBVERT
6481: E6 56 602 INC B0MBL
6483: CE 11 60 603 DEC DEPTH
6486: DO E8 604 BNE BXDRAW
6488: 60 605 RTS

THE INVADERS TYPE GAME

Games of this type are classed as shoot-’em-up games. They generally
involve a movable gun turret, or space ship, that traverses the bottom of the

screen. The object is to defend against a horde of attacking aliens by firing

bullets up at them. The aliens can either advance in ranks, like they do in

Space Invaders, or they can swoop down singly or in groups, as they do in

Apple Galaxian. Sometimes, background stars, moving from top to bottom,
generate the feeling that your gun or ship is in motion. But these games still

involve a static screen in the sense that all objects are manipulated within the

screen space.

On the other hand, there are games that could be classed as dynamic
because the entire background is scrolling in some preset direction, while the

ship or other vehicle usually has controllable movement on the non-scrolling

axis only. Objects which are out of view can be manipulated and scheduled to

appear when your ship moves into their general vicinity. Moving your ship

involves scrolling the entire background, so that terrain and objects out of the
range of your display, suddenly appear. Of course, the terrain you previously

164

occupied is now off screen. Arcade games like Pegasus II involve constant
terrain scrolling from right to left as your spaceship moves further into the
enemy’s territory. This type of animation will be discussed in the following
chapter.

The sequence of events in an Invaders game is diagrammed above. It is

typical of most games. While we aren’t going to develop the entire game, we
will integrate the paddle and bullet firing routines previously outlined in this

chapter with the color drawing routines discussed in Chapter 5.

Since this is the first time that we have actually put together developed
subroutines into a workable game, I should discuss the overall structure of a
machine language program. Programs begin with storage allocations for

variables, and zero page equates or assignments to specific memory locations
in zero page for others. These are followed by initialization routines that
activate Hi-Res graphics, clear the screen, and set specific variables to their
initial values. The main program loop comes next, followed by subroutines.
Your tables, both shape and reference, reside at the end.

Using a good assembler makes the job of writing a program relatively easy.
All the tedious mechanical problems like relative addressing for branch instruc-

tions, references to variable storage, and memory storage assignments are
handled automatically. In fact, the assembler is so adept at calculating
addresses that I often use it for generating internal reference tables to the loca-

tions of my shapes.

166

Normally, it is good programming practice to put shape tables in some
specific yet safe place in memory. But while developing short programs, it is an
extra step to load your shape tables into memory each time that you want to

test the program. Sometimes, it is more convenient to incorporate shape tables
into your program, although their memory location changes with each
modification to your source code.

The assembler can be used to define a reference table to the low byte of each
shape in your shape table. In the TED II + assembler, DB defines a byte - the
lo byte. BIG MAC and MERLIN use DFB.

659B: 16 SHPLO DB SHAPES
659C: 2E DB SHAPES + $18
659D: 46 DB SHAPES + $30

DB SHAPES + $90

The assembler looks up the lo byte address for each of our shapes according
to the address that we give to it. Each shape is 24 (or $18) bytes long. This
accounts for the reason each succeeding shape address increases by $18. Notice
on the left of the above listing that the actual byte value is placed into our table
for each shape. (SHPLO 16 2E 46 5E ...). This corresponds exactly to the lo

byte values in our floating shape table. I’ll extend a word of caution about
using this method. Shape tables must not cross page boundaries, because the hi
byte, which is stored at SHPH in our drawing routine, must be kept constant.
Sometimes, extra space needs to be allocated in the code just before the shape
table for correcting this problem. The DS pseudo-op code to Define Storage
can be used.

The lo and hi bytes for a particular shape are determined by the following
code:

LDY PHORIZ ; PADDLE VALUE 0-255
LDX XOFF.Y ; INDEX TO FIND WHICH SHAPE IN TABLE
LDA SHPLO, X ; INDEX TO GET LO BYTE OF SHAPE IN TABLE
STA SHPL
LDA #>SHAPES ;GET HI BYTE OF SHAPE TABLE
STA SHPH

If you were to choose, instead, to put the shape table at $7000 in memory,
you would use a table called SHPADR to index to the proper shape. Each posi-
tion in the table would reference the lo byte of a shape in the shape table.

SHPADR HEX 00 18 30 48 60 78 90

167

The setup routine is modified as follows:

LDY PHORIZ ; PADDLE VALUE 0-256
LDX XOFF.Y ; INDEX TO FIND WHICH SHAPE IN TABLE
LDA SHPADR , X ; INDEX TO LO BYTE IN TABLE
STA SHPL
LDA $70 ; HI BYTE OF TABLE
STA SHPH

There are no speed advantages or disadvantages gained by using either

method. The former method is strictly for convenience to be used while
developing small programs. To avoid mistakes, large programs should
definitely have shape tables fixed in memory.
The Invaders routine which follows lacks alien targets. It does, however,

have a paddle-controlled gun turret which is capable of firing one bullet at a

time. It is a start, and as you will see later, putting aliens on the screen is not
difficult. A simple flow chart of the program and the actual code is shown
below.

168

1 *CODE FOR PART OF INVADERS GAME
2 ORG $6000

6000: 4C 17 60 3 JMP PROG ; JUMP TO START OF CODE
4 COUNT DS 1

5 INDEX DS 1

6 PADDLEL DS 1

7 PADDLEH DS 1

8 PDL DS 1

9 TEMP DS 1

10 VERT DS 1

11 TVERT DS 1

12 PHORIZ DS 1

13 TPHORIZ DS 1

14 BHORIZ DS 1

15 BPHORIZ DS 1

16 HORIZ DS 1

17 OBJ DS 1

18 LNGH DS 1

19 DEPTH DS 1

20 SLNGH DS 1

21 SHOT DS 1

22 BVERT DS 1

23 BON DS 1

24 HIRESL EQU $26
25 HIRESH EQU HIRESL+$1
26 SHPL EQU $50
27 SHPH EQU SHPL+$1
28 SSHPL EQU $52
29 SSHPH EQU $53
30 STESTL EQU $54
31 STESTH EQU STESTL+$1
32 PREAD EQU $FB1E

6017: AD 50 CO 33 PROG LDA $C050
601A: AD 52 CO 34 LDA $C052
601D: AD 57 CO 35 LDA $C057
6020: 20 8E 60 36 JSR CLRSCR
6023: A9 00 37 LDA #$00
6025: 8D 16 60 38 STA BON

39 *READ PADDLE #1
6028: A2 01 40 RPDL LDX #$01
602A: 20 IE FB 41 JSR PREAD
602D: 8C 07 60 42 SKIPP STY PDL
6030: 98 43 TYA
6031: CD OB 60 44 CMP PHORIZ ;PADDLE<HORIZ POS THEN SUBTRACT 5
6034: BO IE 45 BGE PADDLE3
6036: AD OB 60 46 LDA PHORIZ
6039: 38 47 SEC
603A: E9 05 48 SBC #$05
603C: BO 08 49 BGE PADDLE1 ;MAKE SURE =>0
603E: A9 00 50 LDA #$00
6040: 8D OB 60 51 STA PHORIZ
6043: 8D OC 60 52 STA TPHORIZ
6046: CD 07 60 53 PADDLE1 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
6049: BO 03 54 BGE PADDLE2
604B: AD 07 60 55 LDA PDL
604E: 8D OB 60 56 PADDLE2 STA PHORIZ
6051: 4C 71 60 57 JMP PADDLE6
6054: CD OB 60 58 PADDLE3 CMP PHORIZ ; PADDLE>PHORIZ POS THEN ADD 5
6057: FO 12 59 BEQ PADDLE4
6059: AD OB 60 60 LDA PHORIZ

605C: C9 FA 61 CMP #$FA ; IS PH0RIZ>250
605E: BO OB 62 BGE PADDLE4
6060: AD OB 60 63 LDA PHORIZ
6063: 18 64 CLC
6064: 69 05 65 ADC #$05
6066: CD 07 60 66 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
6069: 90 03 67 BLT PADDLES
606B: AD 07 60 68 PADDLE4 LDA PDL
606E: 8D OB 60 69 PADDLES STA PHORIZ
6071: 8D OC 60 70 PADDLE6 STA TPHORIZ
6074: 20 3F 61 71 JSR GSETUP
6077: 20 A8 60 72 JSR GDRAW
607A: 20 6D 61 73 JSR BSETUP
607D: 20 96 61 74 JSR BULLET
6080: A9 60 75 LDA #$60
6082: 20 A8 FC 76 JSR $FCA8
6085: 20 3F 61 77 JSR GSETUP
6088: 20 A8 60 78 JSR GDRAW
608B: 4C 28 60 79 JMP RPDL ;BACK TO BEGINNING OF MAIN LOOP

80
81 ** SUB R 0 U T I N E S *#

82

83 CLEAR SCREEN
608E: A9 00 84 CLRSCR LDA #$00
6090: 85 26 85 STA HIRESL
6092: A9 20 86 LDA #$20
6094: 85 27 87 STA HIRESH
6096: AO 00 88 CLR1 LDY #$00
6098: A9 00 89 LDA #$00
609A

:

91 26 90 CLR2 STA (HIRESL),

Y

609C: C8 91 INY
609D: DO FB 92 BNE CLR2
609F: E6 27 93 INC HIRESH
60A1

:

A5 27 94 LDA HIRESH
60A3: C9 40 95 CMP #$40
60A5: 90 EF 96 BCC CLR1
60A7: 60 97 RTS

98 *DRAW GUN SHAPE DEPTH LINES BY LNGH
60A8: AC OA 60 99 GDRAW LDY TVERT ; VERTICAL POSITION
60AB: 20 E6 60 100 JSR GETADR
60AE: A2 00 101 LDX #$00
60B0: A1 50 102 GDRAW3 LDA (SHPL,X) ;GET BYTE OF SHIP’S SHAPE
60B2: 51 26 103 EOR (HIRESL),

Y

60B4: 91 26 104 STA (HIRESL),

Y

;PLOT
60B6: E6 50 105 INC SHPL ; NEXT BYTE OF TABLE
60B8: C8 106 INY

60B9: CE 13 60 107 DEC SLNGH
60BC: DO F2 108 BNE GDRAW3 ; IF LINE NOT FINISHED BRANCH
60BE: EE OA 60 109 INC TVERT ; OTHERWISE NEXT LINE]DOWN

60C1: CE 12 60 110 DEC DEPTH
60C4: DO E2 111 BNE GDRAW
60C6: 60 112 RTS

113 *XDRAW GUN SHAPE
6X7: AC OA 60 114 GXDRAW LDY TVERT ; VERTICAL POSITION
60CA: 20 E6 60 115 JSR GETADR
6XD: A2 00 116 LDX #$00
60CF: A1 50 117 GXDRAW2 LDA (SHPL,X)
60D1

:

51 26 118 EOR (HIRESL),

Y

60D3: 91 26 119 STA (HIRESL),

Y

60D5: E6 50 120 INC SHPL

170

60D7: C8 121 INY
60D8: CE 13 60 122 DEC SLNGH
60DB: DO F2 123 BNE GXDRAW2
60DD: EE OA 60 124 INC TVERT
60E0: CE 12 60 125 DEC DEPTH
60E3: DO E2 126 BNE GXDRAW
60E5: 60 127 RTS

128 *GETADR SUBROUTINE
60E6: B9 E4 61 129 GETADR LDA YVERTL ,

Y

;LOOK UP LO BYTE OF LINE
60E9: 18 130 CLC
60EA: 6D OF 60 131 ADC HORIZ ;ADD DISPLACEMENT INTO LINE
60ED: 85 26 132 STA HIRESL
60EF: B9 A4 62 133 LDA YVERTH,

Y

;LOOK UP HI BYTE OF LINE
60F2: 85 27 134 STA HIRESH
60F4: AD 08 60 135 LDA TEMP
60F7: 8D 13 60 136 STA SLNGH
60FA: AO 00 137 LDY #$00
60FC: 60 138 RTS

139 *DRAW ALIEN SHIPS & TARGETS
60FD: A2 00 140 DRAW LDX #$00
60FF: A1 50 141 DRAW2 LDA (SHPL, X)
6101: 91 26 142 STA (HIRESL),

Y

6103: A5 27 143 LDA HIRESH
6105: 18 144 CLC
6106: 69 04 145 ADC #$04
6108: 85 27 146 STA HIRESH
610A: E6 50 147 INC SHPL
610C: C9 40 148 CMP #$40
610E: 90 EF 149 BCC DRAW2
6110: E9 20 150 SBC #$20
6112: 85 27 151 STA HIRESH
6114: CE 11 60 152 DEC LNGH
6117: FO 03 153 BEQ DRAW3
6119: C8 154 INY
6 1 1 A

:

DO E3 155 BNE DRAW 2

611C: 60 156 DRAW3 RTS
157 *XDRAW ALIEN SHIPS & TARGETS

61 ID: A2 00 158 XDRAW LDX #$00
6 1 IF

:

A1 50 159 XDRAW2 LDA (SHPL, X)
6121: 51 26 160 EOR (HIRESL) ,Y
6123: 91 26 161 STA (HIRESL),

Y

6125: A5 27 162 LDA HIRESH
6127: 18 163 CLC
6128: 69 04 164 ADC #$04
612A: 85 27 165 STA HIRESH
612C: E6 50 166 INC SHPL
612E: C9 40 167 CMP #$40
6130: 90 ED 168 BCC XDRAW2
6132: E9 20 169 SBC #$20
6134: 85 27 170 STA HIRESH
6136: CE 11 60 171 DEC LNGH
6139: FO 03 172 BEQ XDRAW3
613B: C8 173 INY
613C: DO El 174 BNE XDRAW2
613E: 60 175 XDRAW3 RTS

176 ^DRAWING ROUTINES SETUP
613F: AC OB 60 177 GSETUP LDY PHORIZ j PADDLE VALUE 0-256
6142: B9 64 63 178 LDA XBASE,

Y

;GET BYTE OFFSET IN TABLE
6145: 8D OF 60 179 STA HORIZ
6148: BE 7C 64 180 LDX XOFFJ ; INDEX TO FIND WHICH SHAPE TABLE

171

614B: BC 94 65 181 LDY SHPADR ,

X

614E: B9 9B 65 182 LDA SHPLO ,

Y

6151: 85 50 183 STA SHPL
6153: A9 66 184 LDA #>SHAPES
6155: 85 51 185 STA SHPH
6157: A9 03 186 LDA #$03
6159: 8D 13 60 187 STA SLNGH
615C: 8D 08 60 188 STA TEMP
61 5F: A9 08 189 LDA #$08
6161: 8D 12 60 190 STA DEPTH
6164: A9 BO 191 Lfe #$B0
6166: 8D 09 60 192 STA VERT
6169: 8D OA 60 193 STA TVERT
616C: 60 194 RTS

195 *BULLET SETUP
616D: AD OD 60 196 BSETUP LDA BHORIZ
6170: 8D OF 60 197 STA HORIZ
6173: AC OE 60 198 LDY BPHORIZ
6176: BE 7C 64 199 LDX XOFF ,

Y

6179: BD A2 65 200 LDA BSHPLO,

X

201
617C: 85 50 202 STA SHPL
617E: A9 67 203 LDA #>BSHAPES
6180: 85 51 204 STA SHPH
6182: A9 02 205 LDA #$02
6184: 8D 13 60 206 STA SLNGH
6187: 8D 08 60 207 STA TEMP
618A: A9 07 208 LDA #$07
618C: 8D 12 60 209 STA DEPTH
618F: AD 15 60 210 LDA BVERT
6192: 8D OA 60 211 STA TVERT
6195: 60 212 RTS

213 *BULLET SUBROUTINE
6196: AD 16 60 214 BULLET LDA BON
6199: C9 01 215 CMP #$01
619B: BO 27 216 BGE BULUPD
619D: AD 62 CO 217 LDA $C062
61A0: 30 03 218 BMI FIRE1
61A2: 4C E3 61 219 JMP NOSHOOT
61A5: A9 A8 220 FIRE1 LDA #$A8
61A7: 8D 15 60 221 STA BVERT
61AA: AC OB 60 222 LDY PHORIZ
61AD: 8C OE 60 223 STY BPHORIZ

224 #_

61B0: B9 64 63 225 LDA XBASE,

Y

61B3: 8D OD 60 226 STA BHORIZ
61B6: 20 6D 61 227 JSR BSETUP
61B9: 20 A8 60 228 JSR GDRAW
61BC: A9 01 229 LDA #$01
61BE: 8D 16 60 230 STA BON
61C1 : 4C E3 61 231 JMP NOSHOOT
61C4: 20 6D 61 232 BULUPD JSR BSETUP
61C7: 20 A8 60 233 JSR GDRAW
61CA: 38 234 SEC
61CB: AD 15 60 235 LDA BVERT
61CE: E9 08 236 SBC #$08
61D0: 8D 15 60 237 STA BVERT
61D3: BO 08 238 BCS SKIP
61D5: A9 00 239 LDA #$00
61D7: 8D 16 60 240 STA BON

;X IS 0-6
; INDEX TO GET LO BYTE SHAPE TABLE

;GET HI BYTE OF SHAPE

; INDEX TO WHICH SHAPE TABLE
; INDEX TO GET LO BYTE OF BOMB -

; SHAPE TABLE

;GET HI BYTE OF SHAPE

; SHAPE 7 LINES DEEP

;TEST BULLET ON SCREEN

; NEG BUTTON PRESSED

; BULLET HORIZ POS CONSTANT AT -

•.INITIAL FIRING P0SITI0N(0-255)
jFIND HOR BYTE OFFSET

; (CONSTANT DURING VERTICAL TRAVEL)

;SET BULLET ON SCREEN FLAG

;THE CARRY FLAG IS SET IF POS

;SET BULLET DEAD FUG

172

6 IDA: 4C E3 61 241 JMP NOSHOOT
61DD: 20 6D 61 242 SKIP JSR BSETUP
61E0: 20 A8 60 243 JSR GDRAW
61E3: 60 244 NOSHOOT RTS

245
246 **T A B LES **

247
61E4: 00 00 00
61E7: 00 00 00
61EA: 00 00 248 YVERTL HEX 0000000000000000
61 EC: 80 80 80
61EF: 80 80 80
61F2: 80 80 249 HEX 8080808080808080
61F4: 00 00 00
61F7: 00 00 00
61FA: 00 00 250 HEX 0000000000000000
61FC: 80 80 80
6 IFF: 80 80 80
6202: 80 80 251 HEX 8080808080808080
6204: 00 00 00
6207: 00 00 00
620A: 00 00 252 HEX 0000000000000000
620C: 80 80 80
620F

:

80 80 80
6212: 80 80 253 HEX 8080808080808080
6214: 00 00 00
6217: 00 00 00
621A: 00 00 254 HEX 0000000000000000
621C: 80 80 80
621F

:

80 80 80
6222: 80 80 255 HEX 8080808080808080
6224: 28 28 28
6227: 28 28 28
622A: 28 28 256 HEX 2828282828282828
62 2C: A8 A8 A8

622F

:

A8 A8 A8

6232: A8 A8 257 HEX A8A8A8A8A8A8A8A8
6234: 28 28 28

6237: 28 28 28
623A: 28 28 258 HEX 2828282828282828
623C: A8 A8 A8
623F: A8 A8 A8

6242: A8 A8 259 HEX A8A8A8A8A8A8A8A8
6244: 28 28 28
6247: 28 28 28
624A: 28 28 260 HEX 2828282828282828
624C: A8 A8 A8
624F

:

A8 A8 A8
6252: A8 A8 261 HEX A8A8A8A8A8A8A8A8
6254: 28 28 28
6257: 28 28 28
625A: 28 28 262 HEX 2828282828282828
625C: A8 A8 A8
625F: A8 A8 A8
6262: A8 A8 263 HEX A8A8A8A8A8A8A8A8
6264: 50 50 50
6267: 50 50 50
626A: 50 50 264 HEX 5050505050505050
62 6C: DO DO DO
626F: DO DO DO
6272: DO DO 265 HEX DODODODODODODODO

173

6274: 50 50 50
6277: 50 50 50
627A: 50 50 266
627C: DO DO DO
627F: DO DO DO
6282: DO DO 267
6284: 50 50 50
6287: 50 50 50
628A: 50 50 268
628C: DO DO DO
628F: DO DO DO
6292: DO DO 269
6294: 50 50 50
6297: 50 50 50
629A: 50 50 270
629C: DO DO DO
629F: DO DO DO
62A2: DO DO 271

272 *

62A4: 20 24 28
62A7: 2C 30 34
62AA: 38 3C 273 YVERTH
62AC: 20 24 28
62AF: 2C 30 34
62B2: 38 3C 274
62B4: 21 25 29
62B7: 2D 31 35
62BA: 39 3D 275
62BC: 21 25 29
62BF: 2D 31 35
62C2: 39 3D 276
62C4: 22 26 2A
62C7: 2E 32 36
62CA: 3A 3E 277
62CC: 22 26 2A
62CF: 2E 32 36
62D2: 3A 3E 278
62D4: 23 27 2B
62D7: 2F 33 37
62DA: 3B 3F 279
62DC: 23 27 2B
62DF: 2F 33 37
62E2: 3B 3F 280
62E4: 20 24 28
62E7 : 2C 30 34
62EA: 38 3C 281
62EC: 20 24 28
62EF: 2C 30 34
62F2: 38 X 282
62F4: 21 25 29
62F7: 2D 31 35
62FA: 39 3D 283
62FC: 21 25 29
62FF: 2D 31 35
6302: 39 3D 284
6304: 22 26 2A
6307: 2E 32 36
630A: 3A 3E 285
630C: 22 26 2A
630F : 2E 32 36

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

174

6312: 3A 3E 286
6314: 23 27 2B

6317: 2F 33 37

631A: 3B 3F 287
631C: 23 27 2B
631F: 2F 33 37

6322: 3B 3F 288
6324: 20 24 28

6327: 2C 30 34

632A: 38 3C 289
632C: 20 24 28

632F: 2C 30 34

.6332: 38 3C 290

6334: 21 25 29
6337: 2D 31 35
633A: 39 3D 291
633C: 21 25 29
633F: 2D 31 35
6342: 39 3D 292
6344: 22 26 2A

6347; 2E 32 36
634A: 3A 3E 293
634C: 22 26 2A

634F: 2E 32 36

6352: 3A 3E 294
6354: 23 27 2B
6357: 2F 33 37
635A: 3B 3F 295
635C: 23 27 2B
635F: 2F 33 37
6362: 3B 3F 296
6364: 00 00 00
6367: 00 00 00
636A: 00 297 XBASE
636B: 00 01 01

636E: 01 01 01

6371: 01 298
6372: 02 02 02
6375: 02 02 02
6378: 02 299
6379: 02 03 03
637C: 03 03 03
637F: 03 300
6380: 04 04 04
6383: 04 04 04
6386: 04 301
6387: 04 05 05
638A: 05 05 05
638D: 05 302
638E: 06 06 06
6391: 06 06 06
6394: 06 303
6395: 06 07 07

6398: 07 07 07
639B: 07 304
639C: 08 08 08
639F: 08 08 08
63A2 : 08 305
63A3: 08 09 09
63A6: 09 09 09

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 00000000000000

HEX 00010101010101

HEX 02020202020202

HEX 02030303030303

HEX 04040404040404

HEX 04050505050505

HEX 06060606060606

HEX 06070707070707

HEX 08080808080808

175

63A9: 09 306
63AA: 0A OA OA
63AD: OA OA OA
63B0: OA 307
63B1: OA OB OB
63B4: OB OB OB
63B7: OB 308
63B8: OC OC OC
63BB: OC OC OC
63BE: OC 309
63BF: OC OD OD
63C2: OD OD OD
63C5: OD 310
63C6: OE OE OE
63C9: OE OE OE
63CC: OE 311
63CD: OE OF OF
63D0: OF OF OF
63D3: OF 312
63D4: 10 10 10

63D7: 10 10 10
63DA: 10 313
63DB: 10 11 11

63DE: 11 11 11

63E1 : 11 314
63E2: 12 12 12
63E5: 12 12 12

63E8: 12 315
63F,9: 12 13 13
63EC: 13 13 13
63EF: 13 316
63F0: 14 14 14

63F3: 14 14 14

63F6: 14 317
63F7 : 14 15 15
63FA: 15 15 15

63FD: 15 318
63FE: 16 16 16
6401: 16 16 16
6404: 16 319
6405: 16 17 17

6408: 17 17 17

640B: 17 320
64OC: 18 18 18

640F: 18 18 18
6412: 18 321
6413: 18 19 19

6416: 19 19 19

6419: 19 322
641A: 1A 1A 1A

641D: 1A 1A 1A

6420: 1A 323
6421: 1A IB IB

6424: IB IB IB

6427: IB 324
6428: 1C 1C 1C

642B: 1C 1C 1C

642E: 1C 325
642F: 1C ID ID

6432: ID ID ID

HEX 08090909090909

HEX OAOAOAOAOAOAOA

HEX OAOBOBOBOBOBOB

HEX OCOCOCOCOCOCOC

HEX OCODODODODODOD

HEX OEOEOEOEOEOEOE

HEX OEOFOFOFOFOFOF

HEX 10101010101010

HEX 10111111111111

HEX 12121212121212

HEX 12131313131313

HEX 14141414141414

HEX 14151515151515

HEX 16161616161616

HEX 16171717171717

HEX 18181818181818

HEX 18191919191919

HEX 1A1A1A1A1A1A1A

HEX 1A1B1B1B1B1B1B

HEX 1C1C1C1C1C1C1C

176

1C1D1D1D1D1D1D6435: ID 326 HEX
6436: IE IE IE

6439: IE IE IE

643C: IE 327 HEX
64 3D: IE IF IF
6440: IF IF IF

6443: IF 328 HEX
6444: 20 20 20
6447: 20 20 20
644A: 20 329 HEX
644B: 20 21 21

644E: 21 21 21

6451: 21 330 HEX
6452: 22 22 22

6455: 22 22 22
6458: 22 331 HEX
6459: 22 23 23

645C: 23 23 23
645F: 23 332 HEX
6460: 24 24 24

6463: 24 24 24
6466: 24 333 HEX
6467: 24 25 25
646A: 25 25 25
646D: 25 334 HEX
646E: 26 26 26
6471: 26 26 26
6474: 26 335 HEX
6475: 26 27 27

6478: 27 27 27
647B: 27 336 HEX
64 7C: 00 00 01

647F: 01 02 02
6482: 03 337 XOFF HEX
6483: 03 04 04

6486: 05 05 06
6489: 06 338 HEX
648A: 00 00 01

648D: 01 02 02
6490: 03 339 HEX
6491: 03 04 04
6494: 05 05 06
6497: 06 340 HEX
6498: 00 00 01

649B: 01 02 02
649E: 03 341 HEX
649F: 03 04 04
64A2: 05 05 06
64A5: 06 342 HEX
64A6: 00 00 01

64A9: 01 02 02
64AC: 03 343 HEX
64AD: 03 04 04
64B0: 05 05 06
64B3: 06 344 HEX
64B4: 00 00 01

64B7: 01 02 02
64BA: 03 345 HEX
64BB: 03 04 04

64BE: 05 05 06

1E1E1E1E1E1E1E

1E1F1F1F1F1F1F

20202020202020

20212121212121

22222222222222

22232323232323

24242424242424

24252525252525

26262626262626

26272727272727

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

64C1 : 06 346
64C2: 00 00 01
64C5: 01 02 02
64C8: 03 347
64C9: 03 04 04
64CC: 05 05 06
64CF: 06 348
64 DO: 00 00 01

64D3: 01 02 02
64D6: 03 349
64D7: 03 04 04
64DA: 05 05 06
64DD: 06 350
64DE: 00 00 01
64E1 : 01 02 02
64E4: 03 351
64E5: 03 04 04
64E8: 05 05 06
64EB: 06 352
64EC: 00 00 01
64EF: 01 02 02
64F2: 03 353
64F3: 03 04 04
64F6: 05 05 06
64F9: 06 354
64FA: 00 00 01
64FD: 01 02 02
6500: 03 355
6501: 03 04 04
6504: 05 05 06
6507: 06 356
6508: 00 00 01
650B: 01 02 02
650E: 03 357
650F: 03 04 04
6512: 05 05 06
6515: 06 358
6516: 00 00 01

6519: 01 02 02
651C: 03 359
651D: 03 04 04
6520: 05 05 06
6523: 06 360
6524: 00 00 01
6527: 01 02 02
652A: 03 361
652B: 03 04 04
652E: 05 05 06
6531: 06 362
6532: 00 00 01
6535: 01 02 02
6538: 03 363
6539: 03 04 04
653C: 05 05 06
653F : 06 364
6540: 00 00 01
6543: 01 02 02
6546: 03 365
6547: 03 04 04
654A: 05 05 06

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

178

03040405050606654D: 06 366
654E: 00 00 01

6551: 01 02 02
6554: 03 367
6555: 03 04 04
6558: 05 05 06
655B: 06 368
655C: 00 00 01
655F: 01 02 02
6562: 03 369
6563: 03 04 04
6566: 05 05 06
6569: 06 370
656A: 00 00 01
656D: 01 02 02
6570: 03 371
6571: 03 04 04
6574: 05 05 06
6577: 06 372
6578: 00 00 01

657B: 01 02 02
657E: 03 373
657F: 03 04 04
6582: 05 05 06
6585: 06 374
6586: 00 00 01
6589: 01 02 02
658C: 03 375
658D: 03 04 04
6590: 05 05 06
6593: 06 376

377
6594: 00 01 02
6597: 03 04 05
659A: 06 378

379
659B: 16 380
659C: 2E 381
659D: 46 382
659E: 5E 383
659F: 76 384
65AO: 8E 385
65A1 : A6 386

387
65A2: 3E 388
65A3: 4C 389
65A4: 5A 390
65A5: 68 391
65A6: 76 392
65A7 : 84 393
65A8: 92 394
65A9: AO 395

396
397

6616: AO 81 00
6619: AO 81 00
661C: AO 81 398
661E: 00 AO 81

6621: 00 A8 85
6624: 00 A8

HEX

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606

HEX 00000101020203

HEX 03040405050606
TABLES

SHPADR HEX 00010203040506
#

SHPLO DFB SHAPES
DFB SHAPES+$ 18

DFB SHAPES-^ 30
DFB SHAPES+$48
DFB SHAPES+$60
DFB SHAPES+$ 78
DFB SHAPES+$90

BSHPLO DFB BSHAPES
DFB BSHAPES+$OE
DFB BSHAPES+$1C
DFB BSHAPES+$2A
DFB BSHAPES+$38
DFB BSHAPES+$46
DFB BSHAPES+$ 54
DFB BSHAPES+$62
DS $6C

*SHAPE TABLE GUN

SHAPES HEX A08100A08100A081

399 HEX 00A08100A88500A8

HEX 85008A94008A9400

6626: 85 00 8A
6629: 94 00 8A
662C: 94 00 400

401 *2ND
662E: 00 85 00
6631: 00 85 00

6634: 00 85 402
6636: 00 00 85
6639: 00 AO 95
663C: 00 AO 403
663E: 95 00 A8
6641: DO 80 A8
6644: DO 80 404

405 *3RD
6646: 00 94 00
6649: 00 94 00
664C: 00 94 406
664E: 00 00 94
6651: 00 00 D5
6654: 80 00 407
6656: D5 80 AO
6659: Cl 82 AO
665C: Cl 82 408

409 *4TH
665E: 00 DO 80
6661: 00 DO 80
6664: 00 DO 410
6666: 80 00 DO
6669: 80 00 D4
666C: 82 00 411
666E: D4 82 00
6671: 85 8A 00
6674: 85 8A 412

413 *5TH
6676: CO 82 00
6679: CO 82 00
667C: CO 82 414
667E: 00 CO 82
6681: 00 DO 8A
6684: 00 DO 415
6686: 8A 00 94
6689: A8 00 94
668C: A8 00 416

417 *6TH
668E: 00 8A 00
6691: 00 8A 00
6694: 00 8A 418
6696: 00 00 8A
6699: 00 CO AA
669C: 00 CO 419
669E: AA 00 DO
66A1

:

AO 81 DO
66A4: AO 81 420

421 *7TH
66A6: 00 A8 00
66A9: 00 A8 00
66AC: 00 A8 422
66AE: 00 00 A8
66B1: 00 00 AA
66B4: 81 00 423

HEX 0085000085000085

HEX 00008500A09500AO

HEX 9500A8D080A8D080

HEX 0094000094000094

HEX 0000940000D58000

HEX D580A0C182A0C182

HEX OODO8OOODO8OOODO

HEX 8000D08000D48200

HEX D48200858A00858A

HEX C08200C08200C082

HEX 00C08200D08A00D0

HEX 8A0094A80094A800

HEX 008A00008A00008A

HEX 00008A00C0AA00C0

HEX AAOODOAO8IDOAO8 I

HEX OOA8OOOOA8OOOOA8

HEX OOOOA8QOOOAA8 100

180

66B6 : AA 81 CO
66B9: 82 85 CO
66BC: 82 85 424 HEX AA81C08285C08285

425 *

426 DS $80
427 *BULLET SHAPE TABLE

673E: 40 01 40
6741: 01 40 01
6744: 40 428 BSHAPES HEX 40014001400140
6745: 01 40 01

6748: 40 01 40
674B: 01 429 HEX 01400140014001

430 *2ND
674C: 00 06 00
674F: 06 00 06
6752: 00 431 HEX 00060006000600
6753: 06 00 06

6756: 00 06 00
6759: 06 432 HEX 06000600060006

433 *3RD
675A: 00 18 00
675D: 18 00 18

6760: 00 434 HEX 00180018001800
6761: 18 00 18

6764: 00 18 00
6767: 18 435 HEX 18001800180018

436 *4TH
6768: 00 60 00
676B: 60 00 60
676E: 00 437 HEX 00600060006000
676F: 60 00 60
6772: 00 60 00
6775: 60 438 HEX 60006000600060

439 *5TH
6776: 00 03 00
6779: 03 00 03
677C: 00 440 HEX 00030003000300
67 7D: 03 00 03

6780: 00 03 00
6783: 03 441 HEX 03000300030003

442 *6TH
6784: 00 OC 00
6787: OC 00 OC
678A: 00 443 HEX OOOCOOOCOOOCOO
678B: OC 00 OC
678E: 00 OC 00
6791: OC 444 HEX OCOOOCOOOCOOOC

445 *7TH
6792: 00 30 00
6795: 30 00 30
6798: 00 446 HEX 00300030003000
6799: 30 00 30

679C: 00 30 00
679F: 30 447 HEX 30003000300030

—END ASSEMBLY-

ERRORS: 0

1952 BYTES

181

I d like to emphasize that careful attention to detail is very important when
programming. Machine language is very unforgiving. Failure to initialize a
single variable could cause your graphics to go haywire. One of the most com-
mon mistakes is to clobber a register in your program or subroutine when call-
ing another subroutine. Some programmers automatically save the
Accumulator and X & Y registers by pushing them onto the stack before calling
a subroutine, and restore them afterwards. It requires six instructions in each
direction. Yet it makes more sense to have the called subroutine save the
registers that it knows will be clobbered, and restore them before returning.
The setup routine for the drawing program is often a source for error.

Although the setup is basically standard for a particular drawing subroutine,
accidentally omitting one variable or failure to place a variable, in say, the Y
register, can be disastrous. To give you an example of unexpected results
remove the STA TVERT in line 190 by NOPing the code in memory.

6169: EA EA EA

Run the program and watch the results. Imagine how long it might take to
find this mistake. Debugging machine language graphics is difficult because
events happen too quickly for the eye to detect. An Integer machine or an
Integer ROM card with step and trace is almost a neccessity. There have been
times when I cleared the screen manually, set the graphics mode and put the
machine in trace mode, so that I could watch the graphics being drawn in slow
motion. Always remember to enter just after your CLRSCR or you will waste
four or five minutes while the computer clears all 8K of Hi-Res memory. The
commands for clearing screen #1 manually are as follows.

*2000 : 00
*2001 <2000. 3FFFM

Another debugging tool that is quite helpful is the single step debug module
which is discussed on page xx. It allows you to step through each animation
frame using the escape key. If your drawing routines are working as expected,
single stepping will allow you to verify shape movement between successive
frames.

182

STEERABLE SPACE SHIPS

The first game with a fully steerable space ship was developed at MIT. It

was called Space War. While most of the newer computer owners won’t recall

this game, practically everyone is familiar with Asteroids. Most versions of this

game have a steerable spaceship that can be thrusted in the direction that it is

headed. Although some versions invoke an automatic deceleration mode, some
Asteroid games require the player to turn his ship around so that it thrusts in

the opposite direction to slow down.
We previously demonstrated, with the topic of dropping bombs and shooting

bullets, that objects move in the direction of their velocity vector.

An object’s new position is its old position plus its change in position due to

velocity, as shown:

x = x + vx
Y = Y + VY.

Using the Apple screen coordinate system for the example above, VY is

negative and VX is positive. Therefore,

X = X + (VX)
Y - Y + (

- VY)

While the velocity vector may remain constant for many animation cycles,

resulting in a ship moving in the same direction, sooner or later a new velocity

vector will be inputted to change the object’s course. This new velocity is the

vector sum of the old velocity vector and the new velocity vector.

Those readers who have taken Physics will recall that a body’s velocity

changes due to external forces on it while it is in motion. In space ships, that

183

force is thrust. Thrust causes an acceleration of the object’s mass as shown in
the equation

F = m s|c a = m :Jc AV.

When thrust is applied to a space ship, it accelerates. If a ship is light and has
a big engine with considerable thrust, it will accelerate quickly. But if it is

heavy, it will accelerate much slower. This acceleration is essentially brought
about by a change in the object’s velocity if the object’s mass is ignored.

Unless you are doing an actual simulation, in which values of thrust or force
and an object s mass is important, only acceleration values need to be con-
sidered. Suitable values for arcade games are small and scaled, so that objects
don’t move too fast relative to their size, or fly off the screen in a blink of the
eye.

Ifwe consider a space ship that is in motion for two frames, then apply thrust
during the third frame, it will change direction depending on the vector sum of
its old and new velocity vectors. This is illustrated below. The applied thrust is

straight upwards, so that VX = 0 and VY = -2. The ship’s new velocity
vector is calculated as follows:

VX = VX + VX =2+0=2
VY = VY + VY = -1 + (-2) = -3

184

The ship’s new velocity vector causes it to move two units in the X direction
and three in the negative Y direction during each frame until a new thrust
vector is applied. The resultant position can be summarized in the table below.

FRAME X Y VX VY
0 10 100 2 -1 X = X + VX
1 12 99 2 -1 Y « Y + VY
2 14 98 2 -1

3 16 97 2 -3 Thrust applied here
4 18 94 2 -3

5 20 91

A paddle will control the ship’s direction in our simulation. The paddle’s
range (0-255) will be divided into eight directions (0-7). Dividing by 32 is sim-
ple in machine language. An arithmetic shift right

(LSR, four times
) will

accomplish the task. After the division, paddle values 0-31 are equal to direc-
tion one, 32-63 to direction two, etc.

Now that we can control our ship in eight directions, we need shape tables
for each of these directions. That means eight separate shapes. Rather than
complicate matters unnecessarily, we will use a white ship and move it horizon-
tally in one byte (7 pixel) increments, and vertically in eight line jumps. This
way, we won’t need extra sets of tables for the various offsets. Also, by conven-
iently keeping the shape within one of the 24 screen subsections, we can use an
abbreviated set of YVERT tables.

4

TROTATE
(0-7)

PADDLE DIRECTION

*
0 1 CM

<>
3

4 5 6 7

185

The ship’s thrust vector is completely dependent on the ship’s paddle-
controlled direction. If TROTATE, our paddle direction’s value is four and
the ship points down, it’s thrust vector or velocity vector is VX = 0 and VY =
1 . IfTROTATE were seven, the ship points diagonally upward and to the left.

The velocity vector is VX = - 1 and VY = - 1

.

Note that many of our ship’s directions produce negative velocity values,
while others produce positive values. Separate routines are required for adding
and subtracting in machine language. BASIC, however, just adds a negative
number (X =5 + (

- 1)). That’s the clue. Adding a negative number is ex-
actly the same as adding a positive number in machine language. Both use an
ADC instruction. The difference is that negative numbers, like -1, are
represented by the two’s complement which, for - 1, is $FF. There is a limit

for signed numbers of + or - 127, because the BMI instruction tests the carry
bit and considers the value negative if it is set.

If you add $FF to $03, the result is $02. Technically, the operation causes an
overflow and the carry is set. But this doesn’t concern us. With the simplifica-

tion of our thrust vector addition problem, we can construct a table of velocity

values for each TROTATE value.

THRUST VECTOR

0 1 2 3 4 5 6 7

XT 00 01 01 01 00 FF FF FF

YT FF FF 00 01 01 01 00 FF

The thrust in this example is not cumulative. If the thrust button is on or
pressed, the ship moves; if off, it stops. The ship drives like a car rather than
floats, like it would in zero-gravity space. This is shown in the following:

XS = XS + XT and YS = YS +YT

where XS & YS is the ship’s current position and XT & YT are the ship’s

velocity vector components.

With XT and YT both a function of TROTATE, the equations become:

XS = XS + XT(TROTATE) and YS = YS + YT(TROTATE)

Thus, we can use table lookup to access the correct thrust for any ship direc-

tion.

186

LDX TROTATE
CLC
LDA XT,X ;GET X THRUST VECTOR FOR TROTATE VALUE
ADC XS ; ADD TO X POSITION
STA XS ; STORE NEW VALUE

Now that the ship can be moved around the screen by both steering and
thrusting, several tests must be implemented at the screen boundaries. Our
Apple screen is 40 bytes wide by 24 subgroups deep. To index beyond the end
of our tables would create unforeseen graphics, especially at the bottom of the
screen.

XS can be tested for values greater than 39 and less than 0. In our case, with
a ship moving only one position per frame, the test for less than 0 would be
equal to the value FF or — 1 . If wrap-a-round is needed for an object leaving
the right side of the screen, just set XS = 0 and it will reenter on the left.

Likewise, setting XS = 39 works for objects leaving the left side of the screen.
If the wrap-a-round effect is not desired, it requires setting XS = 39 for any at-
tempt to leave the right side of the screen, and XS = 0 for any attempt to leave
the left hand side of the screen. Essentially, the ship gets stuck at the edge. The
boundary conditions at the top and bottom are similar.

Our drawing setup routine takes the paddle value into consideration to
obtain the correctly rotated shape from the shape table for plotting. We can
find the correct lo byte of the shape by the following formula:

SHPL = SHPLO (TROTATE)

YREG =

TROTATE

SHPLO

0

1

2

3

$74

$7C

$84

$8C

$AC

SHAPE TABLES

$6174 0th Shape A
$617C 1st Shape

<f
>$6184 2nd Shape

•

l>

$61AC

•

•

7th Shape

187

LDY TROTATE
LDA SHPLO,

Y

STA SHPL
LDA #>SHAPES
STA SHPH

USE VALUE FOR DIRECTION OF ROTATED SHAPE
AS INDEX TO PROPER LO BYTE OF SHAPE
STORE LO BYTE POINTER ON ZERO PAGE
GET HI BTE OF SHAPE TABLE
STORE IN ZERO PAGE

If the ship were turned so that it was pointing right, then TROTATE - 2

and SHPLO (2) = $84. This lo byte of the shape table is stored as SHPL. The
drawing routine will now plot the second shape from our shape table.

As we mentioned earlier, the ship is being moved eight lines at a time

vertically to take advantage of plotting the ship within one of the 24 subsections

on the Hi-Res screen. We can use the eight-line deep plotting routine, which
was developed in the last chapter, ifwe don’t cross any screen boundaries. This
also simplifies and shortens our 192 element YVERT tables to two, 24 byte-

long tables. Each table, one for the hi byte and one for the lo byte, stores the

line address for the beginning of each of these blocks. The correct starting block

for plotting our shape is a function of the ship’s vertical position, YS (0-23). We
index into the tables as before, using the Y register.

LDY YS ; SHIP’S VERTICAL POSITION (0-23)
LDA YBLOCKL , Y ;L00K UP LO BYTE ADDRESS OF LINE
STA HIRESL
LDA YBLOCKH , Y ;L00K UP HI BYTE ADDRESS OF LINE
STA HIRESH

Moving a space ship about the screen by paddle control is actually a simple

case in the overall design of a game. One XDRAWs (erases) the ship at the old

position, reads the paddle controller, calculates the ship’s new position, and
plots it at its new position. This is performed for each animation frame in an
endless loop. Because the code is rather short, a considerable delay is needed to

slow down the animation frame rate. With very short delays in the monitor
delay subroutine, the frame rate exceeds the 30 frame-per-second scan rate of

the television. The ship appears to blink at random during its movement. The
television hasn’t finished drawing the first animation cycle while you moved
your ship two or three times in between. A longer delay, wherein the WAIT
subroutine has a value of $C0 to $FF in the Accumulator, works fine. The flow

chart of this steerable rocket program is shown below.

188

0

4

TROTATE
(0-7)

PADDLE DIRECTION

THRUST VECTOR

0 1 2 3 4 5 6 7

XT 00 01 01 01 00 FF FF FF

YT FF FF 00 01 01 01 00 FF

DRAWING SETUP

190

1 *ROCKET (DRIVES LIKE CAR)
2 ORG $6000

6000: 4C 09 60 3 JMP PROG
4 XS DS 1

5 YS DS 1

6 PDL DS I

7 LNGH DS 1

8 ROTATE DS 1

9 TROTATE DS 1

10 HIRESL EQU $FB
11 HIRESH EQU HIRESL+$1
12 SHPL EQU $FD
13 SHPH EQU SHPL+$

1

14 PREAD EQU $FB1E
15 *ENTER HERE FIRST TIME ACCESS

6009: AD 50 CO 16 PROG LDA $C050
600C: AD 52 CO 17 LDA $C052
600F: AD 57 CO 18 LDA $C057
6012: 20 13 61 19 JSR CLRSCR

20
6015: A9 14 21
6017: 8D 03 60 22
601A: A9 OA 23
601C: 8D 04 60 24
601F: A9 00 25
6021: 8D 07 60 26
6024: 20 F6 60 27
6027: 20 CF 60 28

29
602A: 20 F6 60 30
602D: 20 CF 60 31
6030: A2 01 32
6032: 20 IE FB 33
6035: CO F9 34
6037: 90 02 35
6039: AO F8 36
603B: 8C 05 60 37
603E: 98 38

*INITI LIZE ROCKET'S STARTING POSITION
LDA #$14
STA XS
LDA #$0A
STA YS
LDA #$00
STA ROTATE
JSR DSETUP
JSR DRAW ;DRAW INITIAL POSITION ROCKET

* PADDLE READ
START JSR DSETUP

JSR DRAW ; ERASE ROCKET
LDX #$01
JSR PREAD
CPY #$F9 ;CLIP VALUE (0-250)
BLT SKIPP
LDY #$F8

SKIPP STY PDL
TYA

603F: CD 07 60 39 CMP ROTATE
6042: BO IB 40 BGE PADDLE3
6044: AD 07 60 41 LDA ROTATE
6047: 38 42 SEC
6048: E9 05 43 SBC #$05
604A : BO 05 44 BGE PADDLE1
604C: A9 00 45 LDA #$00
604E: 8D 07 60 46 STA ROTATE
6051: CD 05 60 47 PADDLE1 CMP PDL
6054: BO 03 48 BGE PADDLE2
6056: AD 05 60 49 LDA PDL
6059: 8D 07 60 50 PADDLE2 STA ROTATE
605C: 4C 72 60 51 JMP PADDLE5
605F: CD 07 60 52 PADDLE3 CMP ROTATE
6062: FO OB 53 BEQ PADDLE4
6064: AD 07 60 54 LDA ROTATE
6067: 18 55 CLC
6068: 69 05 56 ADC #$05
606A : CD 05 60 57 CMP PDL
606D: 90 03 58 BLT PADDLE5
606F: AD 05 60 59 PADDLE4 LDA PDL
6072: 8D 07 60 60 PADDLES STA ROTATE

;PADDLE<ROTATE POS THEN SUBTRACT 5

;MAKE SURE =>0

; DON'T WANT TO GO PAST PADDLE POS

; PADDLE>ROTATE POS THEN ADD 5

; DON'T WANT TO GO PAST PADDLE POS

191

6075: 4A 61 LSR ; DIVIDE BY 32 TO GET ROTATION (0-7)
6076: 4A 62 LSR
6077: 4A 63 LSR
6078: 4A 64 LSR
6079: 4A 65 LSR
607A: 8D 08 60 66 STA TROTATE

67 *

607D: AD 62 CO 68 LDA $C062 ;NEG IF BUTTON PRESSED
6080: 30 03 69 BMI THRUST
6082: 4C CO 60 70 JMP NOTHRUST
6085: AE 08 60 71 THRUST LDX TROTATE
6088: 18 72 CLC
6089: BD 5D 61 73 LDA XT, X GET X THRUST VECTOR
608C: 6D 03 60 74 ADC XS ADD TO X POSITION
608F: C9 28 75 CMP #$28 CHECK IF OFF SCREEN RT
6091: DO 08 76 BNE NWRAP1 O.K.
6093: A9 00 77 LDA #$00 NO! THEN WRAP-A-ROUND
6095: 8D 03 60 78 STA XS
6098: 4C A4 60 79 JMP NOWY
609B: C9 FF 80 NWRAP1 CMP #$FF LESS THAN 0? (-1)
609D: DO 02 81 BNE NWRAP2 O.K.
609F: A9 27 82 LDA #$27 NO! THEN WRAP-A-ROUND
60A1: 8D 03 60 83 NWRAP2 STA XS
60A4: 18 84 NOWY CLC
60A5: BD 65 61 85 LDA YT, X GET Y THRUST VECTOR
60A8: 6D 04 60 86 ADC YS •ADD TO Y POSITION
60AB: C9 18 87 CMP #$18 CHECK IF OFF SCREEN BOTTOM
60AD: DO 08 88 BNE NWRAP3 O.K.
60AF: A9 00 89 LDA #$00 NO! THEN WRAP-A-ROUND
60B1 : 8D 04 60 90 STA YS
60B4: 4C CO 60 91 JMP NOTHRUST
60B7: C9 FF 92 NWRAP3 CMP #$FF LESS THAN 0? (-1)
60B9: DO 02 93 BNE NWRAP4 O.K.
60BB: A9 17 94 LDA #$17 NO! THEN WRAP-A-ROUND
60BD: 8D 04 60 95 NWRAP4 STA YS
60C0: EA 96 NOTHRUST NOP

97 *

60C1 : 20 F6 60 98 JSR DSETUP
6X4: 20 CF 60 99 JSR DRAW

;
;DRAW ROCKET

6X7: A9 70 100 LDA #$70
6X9: 20 A8 FC 101 JSR $FCA8

; SHORT DELAY
6XC: 4C 2A 60 102 JMP START

103 ^SUBROUTINE TO DRAW RXKET 1 BYTE BY 8 ROWS
6XF: A2 00 104 DRAW LDX #$00
60D1: A9 01 105 LDA #$01
60D3: 8D 06 60 106 STA LNGH
60D6: A1 FD 107 DRAW 2 LDA (SHPL , X) GET BYTE FROM SHAPE TABLE
60D8: 51 FB 108 EOR (HIRESL) ,

Y

60DA: 91 FB 109 STA (HIRESL) ,

Y

PUT ON HIRES SCREEN
60X: A5 FC 110 LDA HIRESH
60DE: 18 111 CLC
60DF: 69 04 112 ADC #$04 ; THIS GETS TO NEXT ROW IN BLOCK
60E1: 85 FC 113 STA HIRESH
60E3: E6 FD 114 INC SHPL NEXT BYTE OF SHAPE TABLE
60E5: C9 40 115 CMP #$40 ARE WE FINISHED WITH 8 ROWS
60E7: 90 ED 116 BCC DRAW2 NO DO NEXT BYTE
60E9: E9 20 117 SBC #$20 RETURN TO TOP ROW
60EB: 85 FC 118 STA HIRESH
60ED: CE 06 60 119 DEC LNGH
60F0: FO 03 120 BEQ DRAW3

; FINISHED?

192

60F2: C8 121 INY ; NEXT COLUMN OF 8 ROWS
60F3: DO El 122 BNE DRAW 2

60F5: 60 123 DRAW3 RTS
124 DRAWING SETUP SUBROUTINE

60F6: AC 04 60 125 DSETUP LDY YS ; SHIP'S VERTICAL POS (0-2
60F9: B9 45 61 126 LDA YBLOCKL, Y ;LOOK UP LO BYTE OF LINE
60FC: 85 FB 127 STA HIRESL
60FE: B9 2D 61 128 LDA YBLOCKH , Y ;LOOK UP HI BYTE OF LINE
6101: 85 FC 129 STA HIRESH
6103: AC 08 60 130 LDY TROTATE
6106: B9 6D 61 131 LDA SHPLO.Y
6109: 85 FD 132 STA SHPL
610B: A9 61 133 LDA #>SHAPES
610D: 85 FE 134 STA SHPH
610F: AC 03 60 135 LDY XS ; DISPLACEMENT INTO LINE
6112: 60 136 RTS

137 •CLEAR SCREEN SUBROUTINE
6113: A9 00 138 CLRSCR LDA #$00
6115: 85 FB 139 STA HIRESL
6117: A9 20 140 LDA #$20
6119: 85 FC 141 STA HIRESH
611B: AO 00 142 CLR1 LDY #$00
61 ID; A9 00 143 LDA #$00
611F: 91 FB 144 CLR2 STA (HIRESL),

Y

6121: C8 145 INY
6122: DO FB 146 BNE CLR2
6124: E6 FC 147 INC HIRESH
6126: A5 FC 148 LDA HIRESH
6128: C9 40 149 CMP #$40
612A: 90 EF 150 BCC CLR1
612C: 60 151 RTS

152 TABLES OF STARTING VALUE OF EACH OF 24 BLOCKS
612D: 20 20 21
6130: 21 22 22
6133: 23 23 20
6136: 20 153 YBLOCK

H

HEX 20202121222223232020
6137: 21 21 22
613A: 22 23 23
613D: 20 20 21

6140: 21 154 HEX 21212222232320202121
6141: 22 22 23
6144: 23 155 HEX 22222323
6145: 00 80 00
6148: 80 00 80
614B: 00 80 28
614E: A8 156 YBLOCKL HEX 008000800080008028A8
614F: 28 A8 28
6152: A8 28 A8
6155: 50 DO 50

6158: DO 157 HEX 28A828A828A850D050DO
6159: 50 DO 50
615C: DO 158 HEX 50D050D0

159 TABLES OF DIRECTION VECTORS FOR 8 ROTATION VALUES
61 5D: 00 01 01

6160: 01 00 FF
6163: FF FF 160 XT HEX 0001010 1OOFFFFFF
6165: FF FF 00
6168: 01 01 01
616B: 00 FF 161 YT HEX FFFF0001010100FF

162 “GENERATE SHPLO TABLE
163 *(INDEX TO LO BYTE OF EACH ROCKET SHAPE)

616D: 75 164 SHPLO DFB SHAPES
616E: 7D 165 DFB SHAPES+$08
616F: 85 166 DFB SHAPES+$10
6170: 8D 167 DFB SHAPES+$18
6171: 95 168 DB SHAPES+S20
6172: 9D 169 DFB SHAPES+$28
6173: A5 170 DFB SHAPES+$30
6174: AD 171 DFB SHAPES+$38

172 *

173 ROCKET SHAPES
6175: 00 08 08
6178: 08 1C 1C

617B: 36 00 174 SHAPES HEX 00080808 1C 1C3600
175 2ND

617D: 00 00 20
6180: 14 OF 1C

6183: 08 08 176 HEX 000020140F1C0808
177 3RD

6185: 00 00 02
6188: OE 7C OE
618B: 02 00 178 HEX 0000020E700E0200

179 4TH
618D: 00 08 08
6190: 1C OF 14

6193: 20 00 180 HEX 000808 1C0F 142000
181 5TH

6195: 00 00 36

6198: 1C 1C 08
619B: 08 08 182 HEX 000036 1C 1C080808

183 6TH
619D: 00 08 08
61A0: 1C 78 14

61A3: 02 00 184 HEX 0008081C781 40200
185 7TH

61A5: 00 00 20
61A8: 38 IF 38
61AB: 20 00 186 HEX 00002038TF382000

187 8TH
61AD: 00 00 02
61B0: 14 78 1C

61B3: 08 08 188 HEX 000002 1478 1C0808

—END ASSEMBLY— 437 BYTES

194

STEERABLE & FREE FLOATING

Objects in the real world, once started in motion, tend to remain in motion.
Isaac Newton stated it more formally in his first law of motion. Objects remain
at rest or in motion along a straight line unless a force is applied on them to
change that motion. The force in most games is thrust.

In the last section, we dealt with a spaceship that had a velocity only when
thrust was applied to it. We avoided any sustained velocity by zeroing our
velocity vector when there was no thrust. Normally, the equations for deter-
mining the velocity and position of an object in motion are as follows

(They
were discussed briefly under the section on bullets and bomb drops.):

Vnew = Vold + aV a V = CHANGE IN VELOCITY
Dnew = Dold + A D aD = CHANGE IN POSITION

OVER AN ANIMATION
FRAME DUE

OR
Dnew = Dold + Vnew

TO VELOCITY

This breaks down into components in the X and Y directions.

VXnew = VXold + a VX

VYnew = VYold + a VY

Xnew = Xold + VX
Ynew = Yold +VY

Now, when an object is thrusted in any direction, the increase in velocity is

cumulative. For example, if thrust were applied in the positive X direction with
a force of 1 unit/ frame, the new VX would increase from zero by units of one
for each animation frame.

CYCLE VX
0 0

1 1

VX = 1 2 2

3 3

4 4

X CYCLE VY Y
0

1

3 similarly VY - 2

6

10

0 0 0

1 2 2

2 4 6

3 6 12

4 8 20

It becomes clear from our example that if you accelerate for too many anima-
tion frames, the space ship will be moving fairly fast. While the amount of
relative movement depends on your choice of scale, the ship moves to the left or
right seven pixels for every unit change instead of by individual pixels. If, by

195

the fourth frame, our velocity were 4 units/frame, we would actually be moving
28 pixels horizontally per frame. With a slow program, framing at 10 frames/
second, the ship would move entirely across the screen in 1 second. More
likely, with faster animation, it would take less than half a second. This may be
too fast.

A speed brake can be incorporated into the algorithm to prevent the velocity

from exceeding a preset value. This would be analogous to wind resistance on a

fast moving automobile. It prevents a vehicle from reaching ever-increasing

speeds. I chose a maximum velocity of 2 units/ frame. It was an arbitrary

choice based on keeping the animation smooth. Discontinuous jumps at higher
velocities produced degraded animation. The brake is placed just after the

velocity equations. If the value of VX or VY exceeds 2 units/frame, it is

trimmed back to 2 units/frame.

The flow chart, as shown for the X direction (horizontal), is relatively

straight-forward. Again, the velocity vector is a function of the ship’s paddle-

controlled direction.

The paddle control in the non-free-floating ship was restrictive. It prevented

you from directly reaching the straight-up position (0) from a position pointing

upwards and to the left (7). When the paddle’s value was divided by 32, giving

TROTATE values 0-7, it lacked wrap-a-round capability. It would be better

to be able to turn the ship nearly twice around with one twist of the paddle.

This is accomplished by dividing the paddle reading by 16. This gives

TROTATE values 0-15.

196

7&15

0&8

2&12
TROTATE
(0-15)

THRUST VECTOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

XT 01 01 01 01 00 FF FF FF 00 01 01 01 00 FF FF FF

YT FF FF 00 01 01 01 00 FF FF FF 00 01 01 01 00 FF

Since the proper shape is drawn from the correct section of the shape table by
setting the appropriate lo and hi byte pointers for that shape, the index to these
pointers must be corrected for the extra number of rotation angles. With
TROTATE doubled to 16 values, the SHPLO table, which contains the 16
pointers to each shape, must also contain 16 values. Since TROTATE values
are duplicated after 8 values, the SHPLO table, as well as the XT and YT
tables, are duplicated after eight values.

Except for the changes discussed above, the steerable and free-floating ship
routine is much like the former routine, in which the ship drives around like a
car * The flow chart and code are shown below. It might be instructive to
change the delay in line #129 to a small value like $05 to see what happens
when the animation frame rate exceeds the television’s scan rate.

197

6000:

600B:
600E:
6011:
6014:

6017:
6019:
601C:

1 ROCKET (FREE FLOATING)
2 ORG $6000

4C OB 60 3 JMP PROG
4 xs DS 1

5 YS DS 1

6 VX DS 1

7 VY DS 1

8 PDL DS 1

9 LNGH DS 1

10 ROTATE DS 1

11 TROTATE DS 1

12 HIRESL EQU $FB
13 HIRESH EQU HIRESL+$1
14 SHPL EQU $FD
15 SHPH EQU SHPL+$1
16 PREAD EQU $FB1E
17 *ENTER HERE FIRST TIME ACCESS

AD 50 CO 18 PROG LDA $C050
AD 52 CO 19 LDA $C052
AD 57 CO 20 LDA $C057
20 49 61 21 JSR CLRSCR

22 *INITILIZE ROCKET’S STARTING POSITION
A9 14 23 LDA #$14
8D 03 60 24 STA XS
A9 OA 25 LDA #$0A

199

601E: 8D 04 60 26 STA YS
6021: A9 00 27 LDA #$00
6023: 8D 05 60 28 STA VX
6026: 8D 06 60 29 STA VY
6029: 8D 09 60 30 STA ROTATE
602C: 20 2C 61 31 JSR DSETUP
602F: 20 05 61 32 JSR DRAW

33 * PADDLE; READ
6032: 20 2C 61 34 START JSR DSETUP
6035: 20 05 61 35 JSR DRAW
6038: A2 01 36 LDX #$01
603A: 20 IE FB 37 JSR PREAD
603D: CO F9 38 CPY #$F9 ;CLIP VALUE (0-250)
603F: 90 02 39 BLT SKIPP
6041: AO F8 40 LDY #$F8
6043: 8C 07 60 41 SKIPP STY PDL
6046: 98 42 TYA
6047: CD 09 60 43 CMP ROTATE ; PADDLE<ROTATE POS THEN SUBTRACT 5
604A: BO IB 44 BGE PADDLE3
604C: AD 09 60 45 LDA ROTATE
604F: 38 46 SEC
6050: E9 05 47 SBC #$05
6052: BO 05 48 BGE PADDLE1 ;MAKE SURE =>0
6054: A9 00 49 LDA #$00
6056: 8D 09 60 50 STA ROTATE
6059: CD 07 60 51 PADDLE1 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
605C: BO 03 52 BGE PADDLE2
605E: AD 07 60 53 LDA PDL
6061: 8D 09 60 54 PADDLE2 STA ROTATE
6064: 4C 7A 60 55 JMP PADDLE5
6067: CD 09 60 56 PADDLE3 CMP ROTATE ;PADDLE>ROTATE POS THEN ADD 5
606A: FO OB 57 BEQ PADDLE4
606C: AD 09 60 58 LDA ROTATE
606F: 18 59 CLC
6070: 69 05 60 ADC #$05
6072: CD 07 60 61 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
6075: 90 03 62 BLT PADDLE

5

6077: AD 07 60 63 PADDLE4 LDA PDL
607A: 8D 09 60 64 PADDLE5 STA ROTATE
607D: 4A 65 LSR ;DIVIDE BY 16 TO GET R0TATI0N(0-15)
607E: 4A 66 LSR ; —(OR TWO ROATIONS AROUND)
607F: 4A 67 LSR
6080: 4A 68 LSR
6081: 8D OA 60 69 STA TROTATE

70 *

6084: AD 62 CO 71 LDA $C062 ;NEG IF BUTTON PRESSED
6087: 30 03 72 BMI THRUST
6089: 4C Cl 60 73 JMP NOTHRUST
608C: AE OA 60 74 THRUST LDX TROTATE

75 ^UPDATE VELOCITY VX AND VY
608F: 18 76 CLC
6090: BD 93 61 77 LDA XT, X ;GET X THRUST VECTOR
6093: 6D 05 60 78 ADC VX
6096: C9 FD 79 CMP #$FD
6098: DO 05 80 BNE NOCLIP
609A: A9 FE 81 LDA #$FE
609C: 4C A5 60 82 JMP N0CLIP1
609F: C9 03 83 NOCLIP CMP #$03 ;CLIP MAX VELOCITY AT 2

60A1

:

DO 02 84 BNE NOCLIP

1

60A3: A9 02 85 LDA #$02

200

60A5 8D 05 60 86 NOCLIP

1

STA vx ; STORE X VELOCITY
60A8 18 87 CLC
60A9 BD A3 61 88 LDA YT,X
60AC 6D 06 60 89 ADC VY
60AF C9 FD 90 CMP #$FD
60B1 DO 05 91 BNE N0CLIP2
60B3 A9 FE 92 LDA #$FE
60B5 4C BE 60 93 JMP N0CLIP3
60B8 C9 03 94 N0CLIP2 CMP #$03 ;CLIP MAX VELOCITY AT 2

60BA DO 02 95 BNE N0CLIP3
60BC A9 02 96 LDA #$02
60BE 8D 06 60 97 N0CLIP3 STA VY ; STORE Y VELOCITY

98 ^UPDATE SHIP' S X POSITION XS
60C1 18 99 NOTHRUST CLC
60C2 AD 05 60 100 LDA VX

60C5 6D 03 60 101 ADC xs
60C8 C9 EO 102 CMP #$E0 ; CHECK FOR WRAPAROUND LEFT
60CA 90 06 103 BLT NWRAP1
60CC 18 104 CLC
60CD 69 28 105 ADC #$28 ;FIX BY ADDING 40
60CF 4C D9 60 106 JMP NWRAP2
60D2 C9 28 107 NWRAP1 CMP #$28 ; CHECK FOR WRAPAROUND RIGHT
60D4 90 03 108 BLT NWRAP2
60D6 38 109 SEC
60D7 E9 28 110 SBC #$28 ;FIX BY SUBTRACTING 40
60D9 8D 03 60 111 NWRAP2 STA XS ; STORE SHIP'S NEW X POS

112 ^UPDATE SHIP’ S Y POSITION YS
60DC 18 113 CLC
60DD AD 06 60 114 LDA VY

60E0 6D 04 60 115 ADC YS
60E3 C9 EO 116 CMP #$E0 ; CHECK FOR WRAPAROUND TOP
60E5 90 06 117 BLT NWRAP3
60E7 18 118 CLC
60E8 69 18 119 ADC #$18 ;FIX BY ADDING 24
60EA 4C F4 60 120 JMP NWRAP4
60ED C9 18 121 NWRAP3 CMP #$18 CHECK FOR WRAPAROUND BOTTOM
60EF 90 03 122 BLT NWRAP4
60F1 38 123 SEC
60F2 E9 18 124 SBC #$18 ; FIX BY SUBTRACTING 24
60F4 8D 04 60 125 NWRAP4 STA YS

; STORE NEW Y POSITION
126 *

60F7: 20 2C 61 127 JSR DSETUP
60FA: 20 05 61 128 JSR DRAW
60FD: A9 CO 129 LDA #$C0
60FF: 20 A8 FC 130 JSR $FCA8 ; SHORT DELAY
6102: 4C 32 60 131 JMP START

132 SUBROUTINE TO DRAW ROCKET 1 BYTEBY 8 ROWS
6105: A2 00 133 DRAW LDX #$00
6107: A9 01 134 LDA #$01
6109: 8D 08 60 135 STA LNGH
610C: A1 FD 136 DRAW2 LDA (SHPL,X) ;GET BYTE FROM SHAPE TABLE
61 0E

:

51 FB 137 EOR (HIRESL) ,

Y

6110: 91 FB 138 STA (HIRESL) ,Y ;PUT ON HIRES SCREEN
6112: A5 FC 139 LDA HIRESH
6114: 18 140 CLC
6115: 69 04 141 ADC #$04 ;THIS GETS TO NEXT ROW IN BLOCK
6117: 85 FC 142 STA HIRESH
6119: E6 FD 143 INC SHPL ;NEXT BYTE OF SHAPE TABLE
61 IB: C9 40 144 CMP #$40 ; ARE WE FINISHED WITH 8 ROWS
6 1 ID

:

90 ED 145 BCC DRAW2 ;N0 DO NEXT BYTE

61 IF: E9 20 146 SBC #$20 ; RETURN TO TOP ROW
6121: 85 FC 147 STA HIRESH
6123: CE 08 60 148 DEC LNGH
6126: F0 03 149 BEQ DRAW3 ; FINISHED?
6128: C8 150 INY ;NEXT COLUMN OF 8 ROWS
6129: DO El 151 BNE DRAW2
612B: 60 152 DRAW3 RTS

153 ^DRAWING SETUP SUBROUTINE
612C: AC 04 60 154 DSETUP LDY YS
612F: B9 7B 61 155 LDA YBLOCKL,Y ;LOOK UP LO BYTE OF LINE
6132: 85 FB 156 STA HIRESL
6134: B9 63 61 157 LDA YBLOCKH

f
Y

6137: 85 FC 158 STA HIRESH
6139: AC OA 60 159 LDY TROTATE
61 3C: B9 B3 61 160 LDA SHPLO ,

Y

613F: 85 FD 161 STA SHPL
6141: A9 62 162 LDA #>SHAPES
6143: 85 FE 163 STA SHPH
6145: AC 03 60 164 LDY XS ; DISPLACEMENT INTO LINE
6148: 60 165 RTS

166 ‘CLEAR SCREEN SUBROUTINE
6149: A9 00 167 CLRSCR LDA #$00
614B: 85 FB 168 STA HIRESL
614D: A9 20 169 LDA #$20
614F: 85 FC 170 STA HIRESH
6151: AO 00 171 CLR1 LDY #$00
6153: A9 00 172 LDA #$00
6155: 91 FB 173 CLR2 STA (HIRESL),

Y

6157: C8 174 INY
6158: DO FB 175 BNE CLR2
615A: E6 FC 176 INC HIRESH
615C: A5 FC 177 LDA HIRESH
615E: C9 40 178 CMP #$40
6160: 90 EF 179 BCC CLR1
6162: 60 180 RTS

181 ^TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS
6163: 20 20 21

6166: 21 22 22

6169: 23 23 20
616C: 20 182 YBLOCK

H

HEX 20202121222223232020
616D: 21 21 22

6170: 22 23 23
6173: 20 20 21

6176: 21 183 HEX 21212222232320202121
6177: 22 22 23
617A: 23 184 HEX 22222323
617B: 00 80 00
617E: 80 00 80
6181: 00 80 28
6184: A8 185 YBLOCK

L

HEX 008000800080008028A8
6185: 28 A8 28
6188: A8 28 A8
618B: 50 DO 50

618E: DO 186 HEX 28A828A828A850D050D0
618F: 50 DO 50
6192: DO 187 HEX 50D050D0

188
6193: 00 01 01

6196: 01 00 FF
6199: FF FF 189 XT HEX 0001010100FFFFFF

202

HEX 0001010100FFFFFF

619B: OO 01 01
619E: 01 00 FF
61A1: FF FF 190
61A3: FF FF 00
61A6: 01 01 01
61A9: 00 FF 191 YT HEX FFFF0001010100FF
61AB: FF FF 00
61AE: 01 01 01
61B1: 00 FF 192 HEX FFFF0001010100FF

193 *

61B3: 13 194 SHPLO DFB SHAPES
61B4: IB 195 DFB SHAPES+$08
61B5: 23 196 DFB SHAPES+$10
61B6: 2B 197 DFB SHAPES+$18
61B7: 33 198 DFB SHAPES+$20
61B8: 3B 199 DFB SHAPES+$28
61B9: 43 200 DFB SHAPES+130
61BA: 4B 201 DFB SHAPES+$38

202 *NEXT GROUP BECAUSE PADDLE (0-15) INDEXES
203 *INTO SHAPE TABLE TWICE

6 IBB: 13 204 DFB SHAPES
61BC: IB 205 DFB SHAPES+$08
61BD: 23 206 DFB SHAPES+$10
61BE: 2B 207 DFB SHAPES+$18
61BF: 33 208 DFB SHAPES+$20
61C0: 3B 209 DFB SHAPES+$28
61C1: 43 210 DFB SHAPES+$30
61C2: 4B 211 DFB SHAPES+$38

212 *

213 SPACE DS 80
214 ROCKET SHAPES

6213: 00 08 08
6216: 08 1C 1C

6219: 36 00 215 SHAPES HEX 000808081C1C3600
216 2ND

621B: 00 00 20
621E: 14 OF 1C

6221: 08 08 217 HEX 0000201 40F1C0808
218 3RD

6223: 00 00 02
6226: OE 7C OE
6229: 02 00 219 HEX 0000020E7C0E0200

220 4TH
622B: 00 08 08
622E: 1C OF 14

6231: 20 00 221 HEX 000808 1C0F1 42000
222 5TH

6233: 00 00 36
6236: 1C 1C 08
6239: 08 08 223 HEX 0000361C1C080808

224 6TH
623B: 00 08 08
623E: 1C 78 14

6241: 02 00 225 HEX 000808 1C781 40200
226 7TH

6243: 00 00 20

6246: 38 IF 38
6249: 20 00 227 HEX 000020381F382000

228 8TH

203

624B: 00 00 02
624E: 14 78 1C
6251: 08 08 229 HEX 000002 14781C0808

—END ASSEMBLY— 595 BYTES

DEBUG PACKAGE

The debug package that was mentioned earlier is a very useful tool for pro-
grammers. It allows you to single step animation by stopping the animation
with the ESC key. Once the ESC key is pressed, the program goes into a tight
loop while waiting for another key press. Any key except the ESC key will
release it. But since every key, with the exception of the space bar, fails to clear
the keyboard strobe, the computer thinks a key has been pressed when it

encounters the debug subroutine during the next animation frame. Of course,
if the key last pressed was the ESC, it will be caught in that small loop once
again, and stop or single step. Yet if it is another key, it won’t stop the anima-
tion, but would proceed to other tests in the package. The space bar would
release it totally from the subroutine by clearing the keyboard strobe.

ignore

204

The debug package is designed so that you can’t activate any other debug
test without first hitting the ESC key. This way, no matter what uses your keys
have during a game, they can’t activate debug functions inadvertently.

DEBUG PACKAGE TO SINGLE
LDA $C000
BPL IGNORE

CMP #$9B
BNE IGNORE

CAUGHT BIT $C010
LDA $C000
BPL -3
CMP #$A0
BNE IGN0RE+3

IGNORE BIT $C010
NOP

STEP
;KEY PRESSED?
;EXIT IF NO KEY PRESSED
;ESC KEY?

; CLEAR STROBE
;KEY PRESSED?
;LOOP BY BRANCHING BACK 3 BYTES
; SPACE KEY?
; NO, DON'T CLEAR STROBE
; CLEAR STROBE

You could expand the code to do other functions if the code is placed at the
block labeled “other tests”. Examples of this would be pressing the K key to
kill an alien, or the A key to advance to a higher level. This would allow you to
reach modules in your code that might take considerable playing time to
achieve without your debug module.

Another use for this type of code is to insert a user-controlled pause control
into a game. Pause control has just recently been incorporated into arcade
games. It is too bad that most programmers hadn’t thought of leaving part of
the debug module in the game before to offer a pause option.

LASER FIRE & PADDLE BUTTON TRIGGERS

Paddle button switches are used in many games as triggers to fire rockets,
bullets and lasers, or to drop bombs. The Apple computer has three; they are
numbered 0-2. They are accessed through the addresses $C061 to $C063.
To test if a paddle button is pressed, you load the address for that switch into

the Accumulator, then test if the value is negative.

LDA $C061 ;TEST PADDLE #0
BMI FIRE ; NEGATIVE, THEN BUTTON PRESSED

NOFIRE JMP CONTINUE
FIRE JSR LASER ;FIRE LASER

Game designers often want to limit the amount of ammunition that can be
fired at one time. A flag can be set to on when a bullet is fired, and to off when
the bullet either reaches the opposite end of the screen or if it hits something.
The player can’t fire again until the flag is in the off position.

Laser fire presents another problem. The beam travels from the gun or

205

spaceship to the opposite end of the screen in one frame. If the player held the
button, the laser would fire for each frame. Essentially; it would always be on.
The test for a pressed button must include code that would inhibit the button

being held down continuously. You can accomplish this by setting a flag to 1

when the laser is fired. If the button is pressed and the laser was just fired
without the player releasing it first, the test for the flag prevents it from firing
again. The flag is reset to 0 only if the button isn’t pressed.
We set another flag called SHOT to one if the laser is fired. This is because

we want to XDRAW the laser much later in the animation cycle. If weXDRAW it immediately, it would be barely seen. Yet, if it were automatically
XDRAWn later without some sort of test, it would always appear, regardless
of whether it was previously fired or not. The XDRAW laser subroutine tests
to determine if the SHOT is set before it XDRAWs the laser shot; it will conse-
quently skip this routine if the laser hasn’t been fired.

Red lasers look more impressive than white lasers. They also require more
work to plot properly. As usual, our nemesis, the even/ odd color offset pro-
blem

, comes into play. The first position that our laser can be plotted is at
horizontal offset $0C or 12 decimal. This is on an even offset.

OFFSET

A value of$AA will produce a red line in even offsets, and a $D5 will do so in
odd offsets. If you plot these two bytes in pairs for $0E (14 decimal) number of
times, you will produce a red laser beam that extends from the plane to the
right screen boundary.
A flow chart of our algorithm and its accompaning code follows:

206

207

516 *LASER SUBROUTINE
517 *

63D3: AD 62 CO 518 LASER LDA $C062
63D6: 30 08 519 BMI FIRE1
63D8: A9 00 520 LDA #$00
63DA: 8D 14 60 521 STA LFLAG
63DD: 4C 13 64 522 JMP NOSHOT
63E0: AD 14 60 523 FIRE1 LDA LFLAG
63E3: C9 01 524 CMP #$01
63E5: BO 2C 525 BGE NOSHOT
63E7: A9 01 526 LDA #$01
63E9: 8D 13 60 527 STA SHOT
63EC: 8D 14 60 528 STA LFLAG
63EF: 18 529 CLC
63F0: AD OC 60 530 LDA VERT
63F3: 69 07 531 ADC #$07
63F5: A8 532 TAY
63F6: A9 OC 533 LDA #$0C
63F8: 8D OE 60 534 STA HORIZ
63FB: 20 1C 63 535 JSR GETADR
63FE: A2 OE 536 LDX #$0E
6400: A9 AA 537 LASER

1

LDA #$AA
6402: 51 26 538 EOR (HIRESL) ,

Y

6404: 91 26 539 STA (HIRESL) ,

Y

6406: E6 26 540 INC HIRESL
6408: A9 D5 541 LDA #$D5
640A: 51 26 542 EOR (HIRESL),

Y

640C: 91 26 543 STA (HIRESL),

Y

640E: E6 26 544 INC HIRESL
6410: CA 545 DEX
6411: DO ED 546 BNE LASER

1

6413: 60 547 NOSHOT RTS
548 *XDRAW LASER SUBROUTINE

6414: AD 13 60 549 XLASER LDA SHOT
6417: C9 01 550 CMP #$01
6419: DO 24 551 BNE NXSHOT
641B: 18 552 CLC
641C: AD OC 60 553 LDA VERT
641F: 69 07 554 ADC #$07
6421: A8 555 TAY
6422: A9 OC 556 LDA #$0C
6424: 8D OE 60 557 STA HORIZ
6427: 20 1C 63 558 JSR GETADR
642A: A2 OE 559 LDX #$0E
64 2C: A9 AA 560 LASER2 LDA #$AA
642E: 51 26 561 EOR (HIRESL),

Y

6430: 91 26 562 STA (HIRESL) ,Y
6432: E6 26 563 INC HIRESL
6434: A9 D5 564 LDA #$D5
6436: 51 26 565 EOR (HIRESL) ,Y
6438: 91 26 566 STA (HIRESL) ,Y
643A: E6 26 567 INC HIRESL
64 3C: CA 568 DEX
643D: DO ED 569 BNE LASER2
643F: A9 00 570 NXSHOT LDA #$00
6441

:

8D 13 60 571 STA SHOT
6444: 60 572 RTS

;NEG IF BUTTON PRESSED

; BUTTON NOT PRESSED, SET FLAG TO 0

;IS BUTTON BEING HELD DOWN?

SET LASER FIRED FLAG
SET BUTTON PRESSED FLAG

TOP OF SHIP

Y REG CONTAINS VERT. LSER POS.
START AT HORIZ=$OC

FIND ADDRESS OF LASER BEAM LINE
SET UP LOOP FOR E TIMES
DRAW PAIRS OF AA & D5 BYTES(RED)
BY ORING AGAINST SCREEN

NEXT SCREEN POSITION

;NEXT SCREEN POSITION
; DECREMENT INDEX TO LOOP
;DONE?
;YES! EXIT

;HAS LASER BEEN SHOT?
; NO ! SKIP XDRAWING LASER

; RESET LASER FIRED FLAG TO OFF

208

COLLISIONS

One of the most important aspects in any arcade game, especially shoot- ’em-

up type games, is whether an object collides with another object or the

background. As a particular object is drawn to the screen, (one byte at a time,

or even by single pixels, as some programmers prefer), you can simultaneously

test to determine if any other pixels are within that byte’s (or pixel’s) screen

location. The test is performed using the AND instruction.

The truth table for the AND instruction is as follows:

ACC. MEMORY RESULT
0 0 0

0 1 0

1 0 0

1 1 1

Both Accumulator and memory must be on (set) for the result to be on (set).

If we take a Hi-Res screen memory location that has an object in it and AND
it with a byte from our shape table, any duplication in any bit location because
something is already on the screen, will give a non-zero result.

BACKGROUND
SHAPE
AND BACKGROUND WITH SHAPE
RESULT $18 > ZERO

The hi bit, (the color control bit), which isn’t used to activate any of the

seven pixel positions within the byte, could cause a problem. It is possible that

if the hi bit were set in an empty or black background ($80), and a blue or

orange shape were ANDed against the screen, the result would be non-zero.

Obviously, this is an invalid result, because you can’t collide with a black

background. The problem can be avoided if the background is first ANDed
with #$7F to mask the hi bit.

BOBOBOBHI
0 0 0 0 0 0 0 1 BACKGROUND11111110 AND #$7F

00000000 RESULT ZERO
0 0 10 10 11 AND BLUE SHAPE

00000000 RESULT ZERO

209

Usually, in any game, if a collision is detected, the object is to be removed.
The first instinct is to stop drawing the object since it is to be removed,
anyway. But if you are Exclusive-ORing (EORing) the screen and you stop in
the middle ofyour shape, you are going to leave a mess. It is much better to set
a collision flag, finish drawing the shape, then remove the object later by com-
pletely EORing the shape off the screen.

Any two objects of byte size or larger will usually have no problem with colli-
sion detection, especially if the graphics are in B & W. But I can think of a very
specific case involving color in which a collision would not be detected in a
game. Take our space ship or plane from Chapter Five. Let us assume it is
violet. Let s assume a green alien collides with it. The question is: Will it be
detected, and if not, how can we detect a collision?

Let’s map the pixel positions of the bottom row of bytes for both the violet
ship and green alien.

V G V G V G V G V G V G V G V G V G V G V

SHIP

ALIEN

X X X X X X X X X

X X X X

It is quite obvious that if you logical AND the two together, you are going to
obtain zero in all three bytes; in fact, zero over the entire shape. While it is

quite easy to tell you not to use complementary colors in a game, a red alien,
which involves turning on the hi byte in its shape table, would also achieve an
identical result of no collision. Besides, limiting colors hampers your artistic ex-
pression.

The solution is to test the ship against screen memory with what is called a
“mask” of the ship’s shape, as if the ship were a solid white. We take this mask
of the ship, which has both violet and green pixels lit, and AND it against the
alien occupying the same screen locations. A collision will be detected in this
case. We set a flag and then take the appropriate byte from the violet ship’s
shape table and XOR it against the screen.

There is always some order with which objects must be drawn to the screen
to allow our program to detect collisions properly. In a game with a laser-
armed ship pitted against several unarmed aliens (our example), something
must be drawn last. It is that final test that can sometimes get tricky. In many
games, the user s ship is often the last to be placed on the screen. If a collision is

detected, you end up wondering which alien hit it. Very often the screen coor-
dinates of each alien must be compared to that of the ship to determine which
object was killed. This is sometimes harder to do than it looks. That is why,
when you collide with an enemy in many games, the enemy is not wiped out
when the screen refreshes and you receive your next ship. What obviously hap-
pened is: they skipped the test.

210

The order that each object is drawn is shown in the flow chart below.

There isn’t any satisfactory way to avoid the problem of the last test without

elaborate testing. Even if we drew the ship first and the aliens last, we wouldn’t
know if an alien collided with a laser or a ship. It is important that these colli-

sion tests be performed before any background, like stars, are drawn to the

screen. Also, any permanent background such as ground terrain will always

cause a collision.

Single pixel background stars, in some games, are often set in motion to

achieve an illusion of speed where stationary ships are involved. Of course,

they are drawn and Xdrawn before being moved. Programmers usually keep
the star field from intersecting with the ship’s range of operation, which usually

takes place at the bottom of the screen. However, sometimes it is desirable not

to worry about background stars in a program and only draw them at the start

of a game. You could adjust the collision counter to ignore single collisions

while drawing a complex shape. It is likely that a ship’s 24 byte shape would
collide with a 16 byte alien shape in more than one place. Small one byte

bullets, however, might pose a problem if the collision detector’s value were
upped to two instead of the usual one.

211

SET ERROR FLAG = 0

2

*DRAW SHIP SUBROUTINE
*DRAW SHAPE ONE LINE AT A TIME-LNGH BYTES ACROSS

SDRAW LDA #$00
STA ESET

SDRAW1 LDY TVERT
;
VERTICAL POSITION

JSR GETADR
LDX #$00

SDRAW2 LDA (STESTL,X)
;
GET BYTE OF SHIP MASK SHAPE

AND #$7F MASK OUT HI BIT
AND (HIRESL) ,Y

;
(AND) IT AGAINST SCREEN

CMP #$00 IF ANYTHING IN WAY GET>0
BEQ SDRAW3
LDA #$01

;
SET BECAUSE IF DON'T FINISH DRAW-

STA ESET
;
ING SHIP, PIECE LEFT WHEN XDRAW

-x-_ .DURING EXPLOSION
SDRAW3 LDA (SSHPL.X) -GET BYTE OF SHIP'S SHAPE

EOR (HIRESL),Y
STA (HIRESL), Y ;

PLOT
INC STESTL : NEXT BYTE OF MASK
INC SSHPL

;

NEXT BYTE OF TABLE
INY NEXT SCREEN POSITION
DEC SLNGH
BNE SDRAW2 !

;
IF LINE NOT FINISHED BRANCH

INC TVERT :[OTHERWISE NEXT LINE DOWN
DEC DEPTH
BNE SDRAW1 :[DONE DRAWING?
LDA ESET ![IS EXPLOSION FLAG SET?
CMP #$00
BEQ SDRAW4 ;[NO!, EXIT
JMP EXPLODE

;
[YES!, EXPLODE SHIP

SDRAW4 RTS

213

EXPLOSIONS

A game wouldn’t be complete without the enemy blowing apart when killed.

The more dramatic the explosion, the better the effect. Although every pro-
grammer has tried it, most have done it the easy way.

Explosions are divided into two types: shape explosions and particle explo-
sions. Shape explosions are simple, because once an object is targeted for
removal, it is replaced first by a garbage-looking shape and then by a white
blob, which is larger and resembles a debris-filled fireball.

o
SHAPE

The animation is done in successive frames with delays between them. A
nice sound routine, which can also act as a delay between plots, is often incor-
porated. These explosion shapes are stored in a table and are drawn to the
screen with drawing subroutines.

Particle explosions are much more complex. They either involve
mathematical and random number routines to keep particles streaming out-
wards from the exploded shape, or they resort to a series of tables to position
the particles on the screen. I’ve chosen the latter case for the following exam-
ple.

I envisioned a particle fireball that sometimes appears in arcade games like
Defender. When the object begins to blow apart, there is a bright flash, then
the white hot debris begins expanding in a roughly circular fireball. These
fireballs in the arcade grow to be nearly a third the area of the screen and then
fade to dull red before blanking out. While fading the particles to red can be
included, coding it would be rather difficult. Actually, anything can be done on
the Apple if you put your mind to it, but one should weigh the benefits against
the time involved. I achieved the basic effect of the explosion in the following
manner:

214

a

FLASH

a a

a a
a

FRAME 2

a
P

a
n o °

a
o

FRAME3

a
o
a

a
a

a
Q

a
a o
a a

FRAME 4

P

Q
a EXPLOSION SEQUENCE

The explosion fills almost l/9th of the screen. The ship is XDRAWn off the
screen and replaced by a bright white block at the ship’s center. Then, white
particles, each three pixels by four pixels, are drawn in successive expanding
but randomized rings. Each frame has a ring of particles, two layers deep.
Each successively larger ring requires more particles. The closest ring has only

8 particles, whose positions are stored in two tables, EOFFX and EOFFY. The
largest rings have 18 particles.

The two position tables contain the locations of each particle. EOFFX con-
tains the true horizontal offset. EOFFY contains the relative position in rela-

tion to the ship’s vertical position. For example, the center of the fireball is at

VERT + 12. If EOFFY =8, then the particle is plotted at VERT + 12. And if

EOFFY is negative or above the center at -4 ,it is stored as $FC (the two’s
complement), so that it can be added to VERT + 4 directly without testing to

see if it is negative, and then subtracting. The number of particles to be plotted
in any ring is controlled by SBLOCK and EBLOCK. They determine the start

and end points of the data table that is used to draw a ring.

The sequence for drawing the expanding fireball is shown below. It was my
choice that only two layers be shown at any one time while the fireball expands

.

Readers might like to experiment by leaving all of the layers on the screen until

the fireball reaches its limit, then XDRAWing them off from the inside out.
The time delay in my game may seem fast for most readers. The explosion
occurs much too rapidly, but longer delays looked strange using only two layers
of debris. Experiment!

215

667 ^EXPLOSION SUBROUTINE
668

6513: 20 IE 65 669 EXPLODE JSR EXPSUB
6516: A9 FE 670 LDA #$FE
6518: 20 A8 FC 671 JSR $FCA8
651B: 4C DA 61 672 JMP FIN
651E: AD OC 60 673 EXPSUB LDA VERT
6521: 8D OD 60 674 STA TVERT
6524: 20 33 63 675 JSR SSETUP
6527: 20 FD 62 676 JSR SXDRAW
652A: A9 04 677 EDRAW LDA #$04
652C: 8D 11 60 678 STA DEPTH
652F: A9 OA 679 LDA #$0A
6531: 8D OE 60 680 STA HORIZ
6534: AD OC 60 681 LDA VERT
6537: 18 682 CLC
6538: 69 04 683 ADC #$04
653A: 8D OD 60 684 STA TVERT
653D: AC OD 60 685 EDRAW1 LDY TVERT
6540: 20 1C 63 686 JSR GETADR
6543: A9 FF 687 LDA #$FF
6545: 51 26 688 EOR (HIRESL)

,
Y

6547: 91 26 689 STA (HIRESL) ,

Y

6549: EE OD 60 690 INC TVERT
654C: CE 11 60 691 DEC DEPTH
654F : DO EC 692 BNE EDRAW

1

6551: A9 80 693 LDA #$80
6553: 20 A8 FC 694 JSR $FCA8

695 *XDRAW SEQ1 --8 BLOCKS
6556: A9 00 696 LDA #$00
6558: 8D OA 60 697 STA SBLOCK
655B: A9 08 698 LDA #$08
655D: 8D OB 60 699 STA EBLOCK
6560: 20 1A 66 700 JSR EPLOT

701 *XDRAW BEGINING FLASH
6563: A9 04 702 EDRAW2 LDA #$04
6565: 8D 11 60 703 STA DEPTH
6568: A9 OA 704 LDA #$0A
656A: 8D OE 60 705 STA HORIZ
656D: 18 706 CLC
656E: AD OC 60 707 LDA VERT
6571: 69 04 708 ADC #$04
6573: 8D OD 60 709 STA TVERT
6576: AC OD 60 710 EDRAW3 LDY TVERT
6579: 20 1C 63 711 JSR GETADR
657C: B1 26 712 LDA (HIRESL),

Y

657E: 51 26 713 EOR (HIRESL),

Y

6580: 91 26 714 STA (HIRESL),

Y

6582: EE OD 60 715 INC TVERT
6585: CE 11 60 716 DEC DEPTH
6588: DO EC 717 BNE EDRAW3

718 *XDRAW SEQ2-11BL0CKS
6 58A: A9 08 719 LDA #$08
658C: 8D OA 60 720 STA SBLOCK
658F: A9 13 721 LDA #$13
6591: 8D OB 60 722 STA EBLOCK
6594: 20 1A 66 723 JSR EPLOT

724 *XDRAW SEQ1- 8 OFF
6597: A9 00 725 LDA #$00

; XDRAW SHIP

;PLOT WHITE FIREBALL 4 LINES

;HORIZ POS SHIP'S CENTER

; VERT POS TOP OF SHIP

;TO REACH CENTER

! SHIP’S CENTER

; WHITE LINE

;NEXT LINE

;DONE?

; DELAY

218

6599: 8D OA 60 726
659C: A9 08 727
659E: 8D OB 60 728
65A1 : 20 1A 66 729

730
65A4: A9 13 731
65A6: 8D OA 60 732
65A9: A9 22 733
65AB: 8D OB 60 734
65AE: 20 1A 66 735

736
65B1 : A9 08 737
65B3: 8D OA 60 738
65B6: A9 13 739
65B8: 8D OB 60 740
65BB: 20 1A 66 741

742
65BE: A9 22 743
65C0: 8D OA 60 744
65C3: A9 32 745
65C5: 8D OB 60 746
65C8: 20 1A 66 747

748
65CB: A9 13 749
65CD: 8D OA 60 750
65DO: A9 22 751
65D2: 8D OB 60 752
65D5: 20 1A 66 753

754
65D8: A9 32 755
65DA: 8D OA 60 756
65DD: A9 44 757
65DF: 8D OB 60 758
65E2: 20 1A 66 759

760
65E5: A9 22 761
65E7: 8D OA 60 762
65EA: A9 32 763
65EC: 8D OB 60 764
65EF: 20 1A 66 765

766
65F2: A9 44 767
65F4: 8D OA 60 768
65F7: A9 56 769
65F9: 8D OB 60 770
65FC: 20 1A 66 771

772
65FF: A9 32 773
6601: 8D OA 60 774
6604: A9 44 775
6606: 8D OB 60 776
6609: 20 1A 66 777

778
660C: A9 44 779
660E: 8D OA 60 780
6611: A9 56 781
6613: 8D OB 60 782
6616: 20 1A 66 783
6619: 60 784

STA SBLOCK
LDA #$08
STA EBLOCK
JSR EPLOT

*XDRAW SEQ3-15
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT

*XDRAW SEQ2-11 OFF
LDA #$08
STA SBLOCK
LDA #$13
STA EBLOCK
JSR EPLOT

*XDRAW SEQ4-16
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT

*XDRAW SEQ3-15 OFF
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT

*XDRAW SEQ5- 18
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT

*XDRAW SEQ4-16 OFF
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT

*XDRAW SEQ6-18
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT

*XDRAW SEQ5-18 OFF
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT

XDRAW SEQ6-18 OFF
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT
RTS

219

786 *EXPLOSION PLOTTING SUBROUTINE
787

661A: AE 0A 60 788 EPL0T LDX SBL0CK LOCATION IN PARTICLE POSITION
789 -

15-

_

TO START DRAWING
661D: A9 03 790 EPL0T1 LDA #$03 EACH BLOCK 3 LINES DEEP
66 IF: 8D 11 60 791 STA DEPTH
6622: 18 792 EL00P1 CLC
6623: AD OC 60 793 LDA VERT TOP OF SHIP
6626: 69 04 794 ADC #$04 NOW CENTER OF SHIP
6628: 18 795 CLC
6629: 7D 9A 69 796 ADC E0FFY ,

X

ADD RELATIVE Y POS OF PARTICLE.
662C: C9 00 797 CMP #$00 TEST NOT OFF TOP SCREEN
662E: 90 21 798 BLT N0PL0T

;
IF OFF, DON'T LOT

6630: C9 CO 799 CMP #$C0
;
TEST NOT OFF BOTTOM SCREEN

oojz: bU ID 800 BGE N0PL0T
; IF OFF, DON’T PLOT

6634: 8D 09 60 801 STA TEMPI ; STORE VALUE IN TEMPI
663/: BD 44 69 802 LDA E0FFX.X

; LOCATE X POSITION
663A: 8D 0E 60 803 STA H0RIZ
663D: AC 09 60 804 EL00P3 LDY TEMPI

; FIND LINE ADRESS TO PLOT ON SCREEN
6640: 20 1C 63 805 JSR GETADR
6643: A9 F0 806 LDA #$F0

; VALUE OF ALL SHAPE BYTES
6645: 51 26 807 E0R (HIRESL) , Y : XOR WITH SCREEN
6647: 91 26 808 STA (HIRESL), Y :PL0T ON SCREEN
6649: CE 09 60 809 DEC TEMPI

; NEXT LINE, IN THIS CASE DRAWING —
664C : CE 11 60 810 DEC DEPTH

; FROM BOTTOM TO TOP
664F : DO EC 811 BNE EL00P3 :D0NE?
6651: E8 812 N0PL0T INX . DO NEXT PARTICLE
6652: EC 0B 60 813 CPX EBL0CK ;D0NE WITH ALL PARTICLES IN GROUP?
6655: DO C6 814 BNE EPL0T1

; NO, CONTINUE
6657: A9 30 815 LDA #$30
6659: 20 A8 FC 816 JSR $FCA8 : DELAY
665C: 60 817 RTS

SCOREKEEPING

It is a rare exception for machine language games to include a Hi-Res
character generator with a complete character set. It is basically a waste of
space, because only one or two words are written to the Hi-Res screen along
with the numbers 0 through 9 for the numerical score.

For example, in our game, only the word SCORE is written at the top of the
screen. This is done once at the start of the game. The numbers, however,
change with each alien killed. It would appear that the scoring subroutine
would need to convert hexadecimal numbers to decimal numbers, since the
computer stores the numerical score as hexadecimal numbers in memory.
There is a simple method to avoid this messy approach.
The scoring registers can be broken down into three separate digits, one each

for the hundred’s digit, ten’s digit and one’s digit. This is just like the decimal
system. Each time an enemy is killed, the one’s digit storage location is

incremented. This value is tested to see if it becomes greater than 9. If so, the
one’s digit memory location is reset to zero, and the ten’s digit memory loca-
tion is incremented by one.

220

J{*°™ objects were worth two points instead of one point, we could JSR toSCORE twice^Ifa target was worth ten points, one couldJSR to the middle of
the longer SCORE subroutine at a point called SCORE 10. This is the place in
the subroutine where the ten’s digit is incremented. Returning to the main pro-gram would be through the usual RTS.

the following routine, SCOREA represents the one’s digit, SCOREB the
ten s digit, and SCOREC the hundred’s digit. The three variables are drawn
on the screen just after the words SCORE, which is on the very first line at the
top of the Hi-Res screen.

VERTICAL
OFFSET
$2000+ $1D $1E $1F $20 $21 $22 $23 $24 $25

s c 0 R E 0 1 5

SCORE SCORE SCOREABC
Since our three digit score doesn’t move, the numbers don’t change position

during the game. Therefore, they don’t need to be XDRAWn before being up-
dated. New values can be drawn over the old numbers. This necessitated
adding another drawing subroutine that is virtually identical to our standard
eight-line deep XDRAW subroutine, but lacks the EOR code. An alternative
would be to use your XDRAW drawing subroutine after first blacking out the
previous number.
The scoring setup routine is divided into three sections for each of the three

j^ttPOREC is to be drawn to the screen at location $2023, so HIRESL
cmoucu 8” S

.

et aPProPriatelY- The ten number shapes which are stored
at sOURtaH are individually referenced by indexing into a table of lo byte
addresses stored at SCOREP.

6A00 SC0RESH HEX 1C 22
6A08 HEX 08 0C
6A10 HEX

SCOREP 00 08 10 18 .

.

For example, if SCOREC = 2 (hundred’s digit), then the Y register con-
tains a 2. LDA SCOREP,Y loads $10 in the Accumulator and stores the value
as SHPL. The hi byte ofSCORESH is stored as SHPH. Our drawing routine,

using zero page indirect addressing LDA (SHPL),X with X = 0, will

reference the correct shape at $6A10, which in this case are the bytes that form
the number 2 on the screen.

The word SCORE stored as a five byte wide, eight-line deep shape, is drawn
only once on the screen. This is done at the beginning before the program’s
main loop.

843 *SCORE SETUP ROUTINE FOR DRAW
844 *

6693: A9 20 845 SCRSET LDA #$20
6695: 85 27 846 STA HIRESH
6697: A9 23 847 LDA #$23 ; SETUP SCREEN LOCATION TO PLOT —
6699: 85 26 848 STA HIRESL ; SCOREC ,100'S DIGIT
669B: A9 01 849 LDA #$01 ; DIGIT 1 BYTE WIDE
669D: 8D 10 60 850 STA LNGH
66A0: A9 6A 851 LDA #>SC0RESH
66A2: 85 51 852 STA SHPH
66A4: AC 20 60 853 LDY SCOREC
66A7: B9 30 6A 854 LDA SC0REP,Y

; INDEX TO CORRECT SHAPE FOR DIGIT—
66AA: 85 50 855 STA SHPL

; DRAWN
66AC: 20 E8 66 856 JSR SC0REDR ;DRAW 100'S DIGIT
66AF: A9 20 857 LDA #$20 ; SETUP SCREEN LOCATION TO
66B1

:

85 27 858 STA HIRESH
66B3: A9 24 859 LDA #$24 ;PL0T SCOREB ,10'S DIGIT
66B5: 85 26 860 STA HIRESL
66B7

:

A9 01 861 LDA #$01
66B9: 8D 10 60 862 STA LNGH
66BC: A9 6A 863 LDA #>SC0RESH
66BE: 85 51 864 STA SHPH
66C0: AC IF 60 865 LDY SCOREB
66C3: B9 30 6A 866 LDA SC0REP,Y
66C6: 85 50 867 STA SHPL
66C8: 20 E8 66 868 JSR SC0REDR ;DRAW 10 'S DIGIT
66CB: A9 20 869 LDA #$20
66CD: 85 27 870 STA HIRESH
66CF

:

A9 25 871 LDA #$25 ; SETUP SCREEN LOCATION TO
66D1

:

85 26 872 STA HIRESL ;PL0T SCOREA, l'S DIGIT
66D3: A9 01 873 LDA #$01
66D5: 8D 10 60 874 STA LNGH
66D8: A9 6A 875 LDA #>SC0RSH
66DA: 85 51 876 STA SHPH
66DC: AC IE 60 877 LDY SCOREA
66DF: B9 30 6A 878 LDA SC0REP,Y
66E2: 85 50 879 STA SHPL
66E4: 20 E8 66 880 JSR SCOREDR ;DRAW l'S DIGIT
66E7

:

60 881 RTS

222

223

819
820

665D: EE ID 60 821
6660: EE IE 60 822
6663: AD IE 60 823
6666: C9 0A 824
6668: 90 29 825
666A: A9 00 826
666C: 8D IE 60 827
666F: EE IF 60 828
6672: AD IF 60 829
6675: C9 OA 830
6677: 90 1A 831
6679: A9 00 832
667B: 8D IF 60 833
667E: EE 20 60 834
6681: AD 20 60 835
6684: C9 OA 836
6686: 90 OB 837
6688: A9 00 838
668A: 8D IE 60 839
668D: 8D IF 60 840
6690: 8D 20 60 841

842

*SCORE SUBROUTINE
*

SCORE INC KILLNUM
INC SCORE

A

LDA SCOREA
CMP #$0A
BLT SCRSET
LDA #$00
STA SCOREA

SC0RE10 INC SCOREB
LDA SCOREB
CMP #$0A
BLT SCRSET
LDA #$00
STA SCOREB
INC SCORC
LDA SCOREC
CMP #$0A
BLT SCRSET
LDA #$00
STA SCOREA
STA SCOREB
STA SCOREC

; ANOTHER ALIEN KILLED
; INCREMENT COUNTER

; IF <10 DON’T CARRY TENS DIGIT
;ZERO OUT l’S DIGIT

; ADD CARRY IN TENS

;IF <10 DON’T CARRY TO 100'S DIGIT
;ZERO OUT 10 ’S DIGIT & l’S DIGIT

; ADD CARRY IN 100'S

;SKIP IF LESS 999
; RESET TO 0 IF 1000

66E8: A'2 00
66EA
66EC
66EE
66F0
66F2
66F3
66F5
66F7
66F9
66FB
66FD
66FF
6701
6704
6706

6707
6709

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902 SC0RED3

LDX #$00
LDY #$00
LDA (SHPL.X)
STA (HIRESL)
LDA HIRESH
CLC
ADC #$04
STA HIRESH
INC SHPL
CMP #$40
BCC SC0RED2
SBC #$20
STA HIRESH
DEC LNGH
BEQ SC0RED3
INY

BNE SC0RED2
RTS

AO 00
A1 50
91 26

A5 27
18

69 04
85 27

E6 50
C9 40
90 EF
E9 20

85 27
CE 10 60
FO 03
C8

DO E3
60

*SCORE DRAWING ROUTINE
*

SCOREDR

SC0RED2

Y

; OFFSET INTO LINE ALREADY SET —
; IN SCRSET

PAGE FLIPPING

One of the most successful methods for eliminating screen flicker while
simultaneously smoothing animation is screen or page flipping. The principle

involves drawing on one graphics screen while viewing the other. However, it

uses an additional 8K of memory for screen display, and involves elaborate
logic to keep track of what and when to draw or erase on a particular screen.
The logic loop for moving an object across the screen is as follows:

This appears to be rather simple and straight-forward, but it can be tricky.

Let’s take an object on screen #1, located at X,Y coordinates 3,3. We move it

to the right one position to coordinates 4,3 and display it on screen #2. Now,
we move it right once more to 5,3 and plot it on screen #1 . Before we plot it, we
must XDRAW it at its previous position 3,3 ,

because that was its last location

on screen #1. This is different from the last location plotted, which is on screen
#2. The last time we plotted on screen #1, we plotted our object at 3,3. If you
make this mistake and just erase the last object’s position, which was actually

on the opposite screen, you will XDRAW an object at 3,4 and get an object at

that location. Recall that XDRAWing is EORing, and it will plot if nothing is

there and erase if something is there.

225

SCREEN #1 PG 1 SCREEN #2 PG 2

(3,3) (4,3)

> t>
/

XS1 XS2

YS1 YS2

CYCLE #1

Result if XDRAW position
of ship Cycle #2 instead
of XDRAWing last position
on same screen.

The solution to keeping track of the objects is to store the previous location of
all objects for both screens. In the above case, XS1 ,YS1 is always the previous
location for the object on screen #1, while XS2.YS2 is the previous screen posi-
tion for the object on screen #2. While this isn’t awkward for one or two
objects, a multitude of objects may prove difficult for most programmers. If

you are determined to pursue this, I would suggest storing the previous object
locations for each screen in tables, which can then be indexed by object
number.
To demonstrate a working example of page flipping, the free-floating rocket

ship program has been converted to dual screen. Actually, you won’t see any

226

difference in flicker, because only one small object is being drawn. It would
require at least a dozen or more objects before you might begin to see the effects
of flicker. A small minus sign was added to the bottom left corner of screen #1
as a page reference to determine which screen was being viewed. A single step
debug package was also incorporated to allow you to step from screen to
screen.

Screen $1 is considered the odd screen and screen #2 the even screen. A
counter is incremented for each screen cycle. It is tested for its odd/even
character by dividing by two (LSR)and testing the carry bit. Depending on
whether COUNTER is odd or even, you might store coordinate values and
draw on one screen while displaying the other; then, when COUNTER
changes, switch to the opposite screen. For example, if you look at the flow

page flipping DSETUP

odd- pgl
ODD/EVEN ?| —

I even pg2

LOOKUP HI BYTE OF LINE
TO PLOT ON

HIRESH = YBLOCK (YS2)

HIRESH = HIRESH + #$20

LOOKUP L0 BYTE OF LINE
TO PLOT ON

HIRESL = YBLOCK (YS2)

*

LOOKUP HI BYTE OF SHAPE TABLE
SHPH = HI BYTE OF SHAPES

227

chart below - when COUNTER is even, you store screen #2’s values, XS2,
YS2, and TROT2 after calculating the ship’s new position, and draw the ship
on screen #2 while displaying screen #1. When you are finished, you shift the
view to screen #2.

Likewise, the drawing setup subroutine must set the pointers to the proper
line on the proper screen. An even-valued COUNTER needs to locate the
screen line for YS2 and the offset for XS2. In addition, #$20 must be added to
the hi byte line pointer HIRESH for screen #2. Also, the test to determine if all

eight lines have been plotted - a comparison with BOTTOM - becomes > =

#$60, which is the end of the second Hi-Res screen.

The flow chart and code is shown below.

) PG1

) PG2

228

6000

6014:
6017:
601A:
601D:
6020:

6023:
6025:
6028:
602B:
602E:
6030:
6033:
6036:
6039:
603B:
603E:
6041:
6044:
6047:
604A:
604C:
604F:
6052:
6055:
6057:
605A:
605D:
6060:

6063:

6065:

1 FREE FLOATING ROCKET (PAGE FLIPPING)
2 ORG $6000

4C 14 60 3 JMP PROG ; JUMP TO START OF PROGRAM
4 xs DS 1

5 YS DS 1

6 XS1 DS 1

7 XS2 DS 1

8 YS1 DS 1

9 YS2 DS 1

10 VX DS 1

11 VY DS 1

12 PDL DS 1

13 LNGH DS 1

14 COUNTER DS 1

15 BOTTOM DS 1

16 ROTATE DS 1

17 TROTATE DS 1

18 TR0T1 DS 1

19 TR0T2 DS 2

20 HIRESL EQU $FB
21 HIRESH EQU HIRESL+$1
22 SHPL EQU $FD
23 SHPH EQU SHPL+$1
24 PREAD EQU $FB1E
25 ENTER HERE FIRST TIME ACCESS

AD 50 CO 26 PROG LDA $C050
AD 52 CO 27 LDA $C052
AD 57 CO 28 LDA $C057
20 OB 62 29 JSR CLRSCR
20 25 62 30 JSR CLRSCR2

31 INITILIZE ROCKET'S STARTING POSITION
A9 14 32 LDA #$14
8D 03 60 33 STA XS
8D 05 60 34 STA XS1
8D 06 60 35 STA XS2
A9 OA 36 LDA #$0A
8D 04 60 37 STA YS
8D 07 60 38 STA YS1
8D 08 60 39 STA YS2
A9 00 40 LDA #$00
8D 09 60 41 STA VX
8D OA 60 42 STA VY
8D OF 60 43 STA ROTATE
8D 11 60 44 STA TR0T1
8D 12 60 45 STA TROT2

A9 00 46 LDA #$00
8D OD 60 47 STA COUNTER
20 BF 61 48 JSR DSETUP ;DRAW EVEN OR PAGE 2 START POS
20 97 61 49 JSR DRAW
A9 01 50 LDA #$01
8D OD 60 51 STA COUNTER
20 BF 61 52 JSR DSETUP ;DRAW ODD OR PAGE 1 START POS
20 97 61 53 JSR DRAW
AD 55 CO 54 LDA $C055

!
DISPLAY PG 2 WHILE DRAWING ON PG 1

55 PUT MINUS SIGN AT BOTTOM LEFT PAGE 2 FOR REFERENCE
A9 FF 56 LDA #$FF
8D DO 5F 57 STA $5FD0

58 *

230

59 ** M A I N P R 0 G R AM LOOP**
60 *

61 * PADDLE READ
6068: 20 BF 61 62 START JSR DSETUP ;WILL SETUP NON DISPLAYED SCREEN

63 *F0R SHIP XDRAW
606B: 20 97 61 64 JSR DRAW ; XDRAW SHIP ON NON DISPLAY SCREEN
606E: A2 01 65 LDX #$01
6070: 20 IE FB 66 JSR PREAD
6073: CO F9 67 CPY #$F9 ;CLIP VALUE (0-250)
6075: 90 02 68 BLT SKIPP
6077: AO F8 69 LDY #$F8
6079: 8C OB 60 70 SKIPP STY PDL
607C: 98 71 TYA
607D: CD OF 60 72 CMP ROTATE ; PADDLE<ROTATE POS THEN SUBTRACT 5
6080: BO IB 73 BGE PADDLE3
6082: AD OF 60 74 LDA ROTATE
6085: 38 75 SEC
6086: E9 05 76 SBC #$05
6088: BO 05 77 BGE PADDLE

1

;MAKE SURE =>0
608A: A9 00 78 LDA #$00
608C: 8D OF 60 79 STA ROTATE
608F: CD OB 60 80 PADDLE1 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
6092: BO 03 81 BGE PADDLE2
6094: AD OB 60 82 LDA PDL
6097: 8D OF 60 83 PADDLE2 STA ROTATE
609A: 4C BO 60 84 JMP PADDLE5
609D: CD OF 60 85 PADDLE3 CMP ROTATE ;PADDLE>ROTATE POS THEN ADD 5
60A0: FO OB 86 BEQ PADDLE4
60A2: AD OF 60 87 LDA ROTATE
60A5: 18 88 CLC
60A6: 69 05 89 ADC #$05
60A8: CD OB 60 90 CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
60AB: 90 03 91 BLT PADDLE5
60AD: AD OB 60 92 PADDLE4 LDA PDL
60B0: 8D OF 60 93 PADDLE

5

STA ROTATE
60B3: 4A 94 LSR ;DIVIDE BY 16 TO GET ROTATION(O-IS)
60B4 : 4A 95 LSR ;0R WO ROTATIONS
60B5: 4A 96 LSR
60B6: 4A 97 LSR
60B7: 8D 10 60 98 STA TROTATE

99 *

60BA: AD 62 CO 100 LDA $C062 ;NEG BUTTON PRESSED
60BD: 30 03 101 BMI THRUST
60BF: 4C F7 60 102 JMP NOTHRUST
60C2 : AE 10 60 103 THRUST LDX TROTATE

104 UPDATE VELOCITY VX AND VY
60C5: 18 105 CLC
60C6: BD 6F 62 106 LDA XT, X ;GET X THRUST VECTOR
60C9: 6D 09 60 107 ADC VX
60CC: C9 FD 108 CMP #$FD
60CE: DO 05 109 BNE NOCLIP
60D0: A9 FE 110 LDA #$FE
60D2: 4C DB 60 111 JMP N0CLIP1
60D5: C9 03 112 NOCLIP CMP #$03 ;CLIP MAX VELOCITY AT 2

60D7 : DO 02 113 BNE N0CLIP1
60D9: A9 02 114 LDA #$02
60DB: 8D 09 60 115 N0CLIP1 STA VX ; STORE X VELOCITY
60DE: 18 116 CLC
60DF : BD 7F 62 117 LDA YT,X

231

6D OA
C9 FD
DO 05
A9 FE
4C F4

C9 03
DO 02
A9 02
8D OA

60 118
119
120
121

60 122

123
124
125

60 126

ADC
CMP
BNE
LDA
JMP

N0CLIP2 CMP
BNE
LDA

N0CLIP3 STA

VY
#$FD
N0CLIP2
#$FE
N0CLIP3

#$03
N0CLIP3
#$02
VY

;CLIP MAX VELOCITY AT 2

UPDATE SHIP'S X POSITION XS
NOTHRUST CLC

; STORE Y VELOCITY

60F8: AD 09 60 129 LDA VX
60FB: 6D 03 60I 130 ADC XS
60FE: C9 EO 131 CMP #$E0
6100: 90 06 132 BLT NWRAP1
6102: 18 133 CLC
6103: 69 28 134 ADC #$28
6105: 4C OF 61 135 JMP NWRAP2
6108: C9 28 136 NWRAP1 CMP #$28
610A: 90 03 137 BLT NWRAP2
610C: 38 138 SEC
610D: E9 28 139 SBC #$28
610F: 8D 03 60 140 NWRAP2 STA XS

141 UPDATE SHIP’ S Y POS

r

6112: 18 142 CLC
6113: AD OA 60 143 LDA VY
6116: 6D 04 60 144 ADC YS
6119: C9 EO 145 CMP #$E0
61 IB: 90 06 146 BLT NWRAP3
61 ID: 18 147 CLC
61 IE: 69 18 148 ADC #$18
6120: 4C 2A 61 149 JMP NWRAP4
6123: C9 18 150 NWRAP3 CMP #$18
6125: 90 03 151 BLT NWRAP4
6127: 38 152 SEC
6128: E9 18 153 SBC #$18
612A: 8D 04 60 154 NWRAP4 STA YS
612D: 18 155 CLC
61 2E: AD OD 60 156 LDA COUNTER
6131: 4A 157 LSR
6132: BO 15 158 BCS ODD
6134: AD 03 60 159 EVEN LDA XS
6137: 8D 06 60 160 STA XS2
613A: AD 04 60 161 LDA YS
613D: 8D 08 60 162 STA YS2
6140: AD 10 60 163 LDA TROTATE
6143: 8D 12 60 164 STA TR0T2
6146: 4C 5B 61 165 JMP DONE
6149: AD 03 60 166 ODD LDA XS
614C: 8D 05 60 167 STA XS1
614F: AD 04 60 168 LDA YS
6152: 8D 07 60 169 STA YS1
6155: AD 10 60 170 LDA TROTATE
6158: 8D 11 60 171 STA TR0T1
615B: EA 172 DONE NOP

173 *

615C: 20 BF 61 174 JSR DSETUP
175 FOR NON DISPLAY SCREE

61 5F: 20 97 61 176 JSR DRAW
6162: 18 177 CLC

; CHECK FOR WRAPAROUND LEFT

;FIX BY ADDING 40

; CHECK FOR WRAPAROUND RIGHT

;FIX BY SUBTRACTNG 40
; STORE SHIP'S NEW X POS

; CHECK FOR WRAPAROUND TOP

;FIX BY ADDING 24

CHECK FOR WRAPAROUND BOTTOM

FIX BY SUBTRACTING 24
STORE NEW Y POSITION

; STORE SHIP'S CURRENT VARIABLES-PG 2

; STORE SHIP'S CURRENT VARIABLES -PG 1

; SETUP SHIP'S NEW DRAWING POS

! DRAW SHIP ON NON DISPLAYED SCREEN

232

TEST COUNTER TO DETERMINE6163:

6166:

6167:

6169:

616C:
616F:
6172:

6173:
6176:

6178:

617A:
617C:
617F:
6182:
6184:
6186:
6188:
618B:
618C:
618F:
6191:
6194:

6197:
6199:
619B:
619E:

61A0:
61A2:
61A4:
61A6:
61A7

:

61A9:
61AB:
61AD:
61BO:
61B2:
61B4:
61B6:
61B9:
61BB:
61BC:
61BE:

61BF:
61C2:
61C3:

61C4:

61C6:
61C9:
6 ICC:

61CD:
61CF:
61D1:

AD OD 60 178 LDA COUNTER TEST COUNTER TO DETERMINE
179 *NEW PAGE DISPLAYE

4A 180 LSR DISPLAY PAGE JUST DRAWN TO
BO 06 181 BCS ODDI ODD SHIFT TO PAGE 1

AD 55 CO 182 EVEN1 LDA $C055 EVEN SHIFT TO PAGE 2
4C 72 61 183 JMP SKIPO
AD 54 CO 184 ODDI LDA $C054
EA 185 SKIPO NOP

186 DEBUG PACKAGE TO SINGLE STEP
AD 00 CO 187 LDA $C000 KEY PRESSED?
10 10 188 BPL IGNORE EXIT IF NO KEY PRESSED
C9 9B 189 CMP #$9B ESC KEY?
DO OC 190 BNE IGNORE
2C 10 CO 191 CAUGHT BIT $C010 CLEAR STROBE
AD 00 CO 192 LDA $C000 KEY PRESSED?
10 FB 193 BPL *-3 LOOP BY BRANCHING BACK 3 BYTES
C9 AO 194 CMP #$A0 SPACE KEY?
DO 03 195 BNE IGNORE+3 NO, DON'T CLEAR STROBE
2C 10 CO 196 IGNORE BIT $C010 CLEAR STROBE
EA 197 NOP
EE OD 60 198 INC COUNTER INCREMENT COUNTER FOR NEXT FRAME
A9 CO 199 LDA #$C0
20 A8 FC 200 JSR $FCA8 SHORT DELAY
4C 68 60 201 JMP START

202 *

203 * S U B R 0 U TINES*
204 *

205 SUBROUTINE TO DRAW ROCKET 1 BYTEBY 8 ROWS
A2 00 206 DRAW LDX #$00
A9 01 207 LDA #$01
8D OC 60 208 STA LNGH
A1 FD 209 DRAW2 LDA (SHPL, X) GET BYTE FROM SHAPE TABLE
51 FB 210 EOR (HIRESL)

, Y

91 FB 211 STA (HIRESL) ,

Y

PUT ON HIRES SCREEN
A5 FC 212 LDA HIRESH
18 213 CLC
69 04 214 ADC #$04 THIS GETS TO NEXT ROW IN BLOCK
85 FC 215 STA HIRESH
E6 FD 216 INC SHPL NEXT BYTE OF SHAPE TABLE
CD OE 60 217 CMP BOTTOM ARE WE FINISHED WITH 8 ROWS
90 EC 218 BCC DRAW2 NO DO NEXT BYTE
E9 20 219 SBC #$20 RETURN TO TOP ROW
85 FC 220 STA HIRESH
CE OC 60 221 DEC LNGH
FO 03 222 BEQ DRAW

3

FINISHED?
C8 223 INY

!

NEXT COLUMN OF 8 ROWS
DO EO 224 BNE DRAW2
60 225 DRAW3 RTS

226 *DRAWING SETUP SUBROUTINE
AD OD 60 227 DSETUP LDA COUNTER ;ODD PAGE 1 :EVEN PAGE 2

18 228 CLC
4A 229 LSR TEST ODD OR EVEN BY SHIFTING -

230 ; INTO CARRY BIT
BO 23 231 BCS PAGE1
AC 08 60 232 PAGE2 LDY YS2
B9 3F 62 233 LDA YBLOCKH,Y
18 234 CLC
69 20 235 ADC #$20 ADD TO REFRENCE SCREEN 2 MEMORY
85 FC 236 STA HIRESH
B9 57 62 237 LDA YBLOCKL,Y

233

61D4: 85 FB 238
61D6: AC 12 60 239

240
61D9: B9 8F 62 241
61DC: 85 FD 242
61DE: A9 60 243

244
61E0: 8D OE 60 245
61E3: AC 06 60 246
61E6: 4C 06 62 247
61E9: AC 07 60 248
61EC: B9 3F 62 249
61EF: 85 FC 250
61F1: B9 57 62 251
61F4: 85 FB 252
61F6: AC 11 60 253
61F9: B9 8F 62 254
61FC: 85 FD 255
61FE: A9 40 256
6200: 8D OE 60 257
6203: AC 05 60 258
6206: A9 63 259
6208: 85 FE 260
620A: 60 261

262
620B: A9 00 263
620D: 85 FB 264
620F: A9 20 265
6211: 85 FC 266
6213: AO 00 267
6215: A9 00 268
6217: 91 FB 269
6219: C8 270
621A: DO FB 271
62 1C: E6 FC 272
621E: A5 FC 273
6220: C9 40 274
6222: 90 EF 275
6224: 60 276

277
6225: A9 00 278
6227: 85 FB 279
6229: A9 40 280
622B: 85 FC 281
62 2D: AO 00 282
622F: A9 00 283
6231: 91 FB 284
6233: C8 285
6234: DO FB 286
6236: E6 FC 287
6238: A5 FC 288
623A: C9 60 289
623C: 90 EF 290
623E: 60 291

292
623F: 20 20 ;21

6242: 21 22 ;22

STA HIRESL
LDY TR0T2 ; SETUP POINTER TO CORRECT SHAPE -

*-
; TABLE

LDA shplo.y
STA SHPL
LDA #$60 ;THIS WILL CORRECT DRAWING TEST

*FOR END OF 8 LINES - PG 2

STA BOTTOM
LDY XS2
JMP SKIPPY

PAGE1 LDY YS1
LDA YBLOCKH.Y ;LOOK UP HI BYTE OF LINE
STA HIRESH
LDA YBLOCKL,Y
STA HIRESL
LDY TR0T1
LDA SHPLO ,

Y

STA SHPL
LDA #$40
STA BOTTOM
LDY XS1 ; DISPLACEMENT INTO LINE

SKIPPY LDA #>SHAPES
STA SHH
RTS

*CLEAR SCREEN SUBROUTINE
CLRSCR LDA #$00

STA HIRESL
LDA #$20
STA HIRESH

CLR1 LDY #$00
LDA #$00

CLR2 STA (HIRESL),

Y

INY
BNE CLR2
INC HIRESH
LDA HIRESH
CMP #$40
BCC CLR1
RTS

*CLEAR SCREEN 2 SUBROUTINE
CLRSCR2 LDA #$00

STA HIRESL
LDA #$40
STA HIRESH

CLR3 LDY #$00
LDA #$00

CLR4 STA (HIRESL) ,Y

INY
BNE CLR4
INC HIRESH
LDA HIRESH
CMP #$60
BCC CLR3
RTS

^TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS

234

6245: 23 23 20
6248: 20 293
6249: 21 21 22

624C: 22 23 23
624F: 20 20 21

6252: 21 294
6253: 22 22 23

6256: 23 295
6257: 00 80 00
625A: 80 00 80
625D: 00 80 28

6260: A8 296
6261: 28 A8 28
6264: A8 28 A8
6267: 50 DO 50
626A: DO 297
626B: 50 DO 50

626E: DO 298
299

626F: 00 01 01

6272: 01 00 FF
6275: FF FF 300
6277: 00 01 01

627A: 01 00 FF
627D: FF FF 301

627F

:

FF FF 00
6282: 01 01 01
6285: 00 FF 302
6287: FF FF 00
628A: 01 01 01

628D: 00 FF 303
304

628F: 03 305
6290: OB 306
6291: 13 307
6292: IB 308
6293: 23 309
6294: 2B 310
6295: 33 311
6296: 3B 312

313
314

6297: 03 315
6298: OB 316
6299: 13 317
629A: IB 318
629B: 23 319
629C: 2B 320
629D: 33 321
629E: 3B 322

323
324
325

6303: 00 08 08
6306: 08 1C 1C
6309: 36 00 326

327

YBLOCKH HEX 20202121222223232020

HEX 21212222232320202121

HEX 22222323

YBLOCKL HEX 008000800080008028A8

HEX 28A828A828A850D050D0

HEX 50D050D0

XT HEX 0001010100FFFFFF

HEX 000 101 0 100FFFFFF

YT HEX FFFF0001010100FF

HEX FFFF0001010100FF
*

SHPLO DFB SHAPES
DFB SHAPES+$08
DFB SHAPES+$10
DFB SHAPES+$18
DFB SHAPES+120
DFB SHAPES+$28
DFB SHAPES+$30
DFB SHAPES+$38

*NEXT GROUP BECAUSE PADDLE (0-15) INDEXES INTO
*SHAPE TABLE TWICE

DFB SHAPES
DFB SHAPES+$08
DFB SHAPES+$10
DFB SHAPES+$18
DFB SHAPES+$20
DFB SHAPES+$28
DFB SHAPES+$30
DFB SHAPES+$38

*

SPACE DS 100
BROCKET SHAPES

SHAPES HEX 00080808 1 C 1C3600
*2ND

630B: 00 00 20
630E: 14 OF 1C

6311: 08 08 328
329 *3RD

6313: 00 00 02
6316: OE 7C OE
6319: 02 00 330

331 *4TH
631B: 00 08 08
631E: 1C OF 14

6321: 20 00 332
333 *5TH

6323: 00 00 36
6326: 1C 1C 08
6329: 08 08 334

335 *6TH
632B: 00 08 08
632E: 1C 78 14

6331: 02 00 336
337 *7TH

6333: 00 00 20
6336: 38 IF 38
6339: 20 00 338

339 *8TH
633B: 00 00 02
633E: 14 78 1C

6341: 08 08 340

—END ASSEMBLY-

HEX 0000201 40F1C0808

HEX 0000020E7C0E0200

HEX 0008081C0F 1 42000

HEX 0000361C1C080808

HEX 0008081C781 40200

HEX 000020381F382000

HEX 000002 14781C0808

ERRORS: 0

835 BYTES

236

CHAPTER 7

GAMES THAT SCROLL

Scrolling games are dynamic in nature, in that the entire background moves
as the player traverses the game’s terrain. True scrolling arcade games, such as

Pegasus II on the Apple, or Scramble and Rally X in the arcades, have multi-

screen worlds which scroll on or off the screen as the player’s plane or car

moves. These games show only a window or part of the entire background
world at one time. They differ from games that have background stars and
aliens that appear to be traveling towards you from top to bottom. Scrolling

games have objects or terrain in relatively stable positions within the game’s
world. They can be reached by traveling to that particular section of the world.

And this technique isn’t just limited to arcade games. Ultima, an adventure
game, uses a large map that scrolls as the player moves around. Your screen

view is only a small window on the game’s world.

*

64
UNITS

XS.YS
\h- 20 -H
T
12 TV

il
SCREEN

BLOCK OR UNIT

*| 14 PIXELS \+

k 64 UNITS

ULTIMA MAP

The data that generates these maps is stored in large arrays. A game like

Ultima has a map 64 units square, with each block 14 pixels wide by 16 lines

deep. If one byte is used to store which shape is used for each block, 4K of

memory is needed. There is a reason why 64 units was chosen for a side. When
referencing the location of your viewing window, which is located at position

XS, YS on the large map, you retrieve data from a table or array, in which
each row of blocks is stored $40 below the previous row. Sixty-four units per

side is not etched in concrete, but some multiple of 16 is convenient. A map 128

units by 32 units would also work well.

237

Games like Pegasus II on the Apple allow as many as ten screen lengths to
scroll past the viewer before repeating. The horizontal scrolling is done a byte
at a time and the data is stored in tables. Pegasus II, which uses page flipping
to smooth the animation, gains added speed by scrolling only sections of the

In this section we are going to develop a scrolling game much like Pegasus
II. It will be defined in much more detail than my previous examples, yet itwon t be complete. Aliens will appear, but they won’t shoot back. You’ll be
able to kdl the aliens with your lasers and accumulate points as you do so, butyou 11 find that there is no finish, nor even a goal. Consider the unfinishedgame a test bench to develop your graphics skills.

The first step is to define and develop a fast scrolling subroutine. Since it is

7le

uuT,e °bjec
!

s horizontally one byte per animation frame, our scrolling
should be linked with that speed if objects are to remain synchronzied with the
terrain. A counter can be used to determine the screen’s location within ourmuch larger world. With the counter limited to 256 and screen scrolling set at 7
pixels per frame, the most logical length for a world would be 1 792 pixels or
seven screen lengths.

r

COUNTER

V^en the counter reaches 256, it wraps back to zero for a repeat of screen
fl. You have to be careful when approaching the upper end of the database
Once the counter indexes beyond 215, it begins accessing data beyond the
1791st position. This can be remedied by enlarging the table to 2048 data
points, with the last 279 points a duplicate of the first 279 points. The terrain
level at the end of the seventh screen should match the terrain level at the
beginning of the first frame, as shown above.
The data points are Y axis screen coordinates (0-191) for each of the 1792

positions along the X axis. The data was placed into the table by an Applesoft
program called Mountain Maker. It takes a series ofX,Y points corresponding
to each change in direction of our terrain and, by simple slope equations
generates the data points in between. The program is listed below.

238

5 DIM NAME$(20)
10 TEXT : HOME : PRINT : PRINT " MOUNTAIN BACKGROUND GENE
RATOR"
20 PRINT : HTAB 15: PRINT "WORKING"
25 SH = 4000
30 START = 16384
35 J = START
40 READ A,B
50 X2 - A:Y2 = B
60 READ C,D
70 IF C = - 1 THEN 1000
80 XI = X2:Y1 - Y2:X2 = C:Y2 = D
90 SLOPE = (Y2 - Yl) / (X2 - XI)
100 FOR I « XI TO X2 - 1

105 Y = INT (Yl + (SLOPE * (I - XI)))
110 POKE J,Y
120 J = J + 1

130 NEXT I: GOTO 60
150 END
1000 POKE J , Y2
1010 PRINT : INPUT "DATABASE NAME ?";NAME$
1020 PRINT "BSAVE"; NAME$;",A$";SH;",L$2000"
2000 DATA 0,10,80,40,175,25,250,65,335,20,375,32
2010 DATA 625,32,700,15,750,70,900,45,1070,90
2020 DATA 1190,12,1220,20,1320,10,1350,17,1440,5
2030 DATA 1500,40,1540,100,1610,50,1640,40,1710,5
2040 DATA 1730,5,1810,15,1840,15,1870,35,1900,25,1920,55,19
50,30,1980,55
2050 DATA 2047,10,-1,-1

239

T ™\fr° hng subroutine works as follows. Each time the position counterINDEX, is incremented, it adds seven to the lo byte of a pair of zero page
pointers, GROUNDL and GROUNDH, through a multi-byte addition
lhese pointers index mto a table called NEW MOUNTAINS, stored at
$4000. Starting with the first data point located at GROUNDH, GROUNDL
the routine plots that point at X = 0. It increments the lo byte of the data
point, then plots the second point at X = 1 . It does that until all 280 points are

f
°tted; PI°“lnS 1S accomplished by EORing the proper pixel to the screen.When it is finished plotting, it reloads GROUNDH and GROUNDL thenEORs all the points off the screen. Note that GROUNDH and GROUNDL

are not changed during the plotting phase because zero page locations $4 and
$5 were used to store the pointers. When these are incremented, it doesn’t
affect our original pointers, which are stored elsewhere.

BE BD

B8

B9

BA

BB

BC

BD

BE

BF

t

BB B9 BA BB BC NEW MTS TABLE

GROUNDL, GROUNDH

Position on screen

0 1 2 3 4 5 6 7

SCREEN X

The terrain does flicker excessively because it is off the screen as much as on
the screen. I’m sure ambitious readers will want to rewrite the subroutine, or
convert the entire program to page flipping.
The second step in developing the game is to devise a method for determin-

ing whether an object is on or off the screen. This depends on the location of the
object in our multi-screen long world in relation to that of the screen’s moving
window. Obviously, the two must coincide for the object to appear.

240

Our viewing window is controlled by the counter, INDEX (0-255). We see

the terrain in that window from INDEX 5|c 7 to (INDEX + 39) Jfc 7. While our

terrain is stored as individual data points for each pixel, our shapes are stored

and plotted as data bytes at a particular horizontal position (0-39).

Fortunately, the choice of moving the terrain seven pixels (or one screen byte

to the left with each frame) synchronizes with the easiest method of moving a

raster shape in the same direction. Single byte moves require no offset shape

tables.

Objects can be assigned reference positions corresponding to their horizontal

byte location (0-255) in our seven screen long world. A table of these values is

stored in ONPOS. Each object’s vertical position is correspondingly stored in a

table TABLEY. TABLEX contains the object’s current screen position (0-39).

This value changes during each frame, regardless of whether the object

remains stationary with respect to the terrain.

An object first appears on the scrolling screen at the far right when INDEX
- > ONPOS(OBJ #). The ONPOS value for an object is not actually its true

horizontal position, but one that is offset by 39 bytes.

The object moves left one byte exactly in step with the ground movement
with each successive animation frame. The value of TABLEX (OBJ #)

is set

originally to X =38 or $26. X is set to 38 rather than 39 because our alien

shape is two bytes wide, and we would like to plot its full shape on the screen’s

right side rather than half of its shape. During each successive cycle, we decre-

ment the X position in TABLEX table and test each time for a value less than

zero. If so, we are now off the screen, and we set the ONFLAG
(OBJ #) = 0

241

*“ TAKE OBJECT

} L

TEST IF OBJECT

>

yes

ON FLAG ON?

\

no
f

yes=l update

XDRAW OBJECT

IS INDEX => ON POSITION
yes

i 1_
USED ALREADY FLAG ON?

f

I no
1

DRAW INITIAL POSITION
OF OBJECT AT FAR RIGHT

X=38 ($26)

MOVE OBJECT

DECREMENT X POSITION

1 .yes
SET ONFLAG ON 4
SET USED ALREADY FLAG ON

| IS X POS. >0?

1
(AT FAR LEFT?)

DRAW OBJECT AT
NEW POSITION

XDRAW
OBJECT

COLLISION ?

|
no

ALIVE FLAG=0
ON FLAG = 0

0NFLAG=0
(OFF)

NEXT OBJECT

DONE ALL OBJECTS ?

yes

i—
INCREMENT INDEX

—
INDEX

r

= 0? Preset all already

>

no
r

USED FLAGS TO 0

REST OF PROGRAM

242

There are several flags that are required to keep track of certain aspects of

the game. The ONFLAG
(OBJ #)

is used to determine if the object is to be

actively plotted on the screen. Assuming our object is actually alive, ALIVE
(

OBJ #)
= 1 and not dead

(
value = 0), then the ONFLAG

(OBJ #) is tested.

If this flag was turned on because the object meets the INDEX - > ONPOS
(

OBJ#) test, it will appear for the next 38 cycles unless it is destroyed by your

ship's laser. In either case, when the object reaches the end of its time on the

screen, the ONFLAG
(OBJ #)

flag is set to off, or zero.

There is one additional flag. That is the USFLAG, or used-already flag. It is

necessary because if, for example, an object were to appear on the screen when
INDEX = 50 and vanish at INDEX = 88, without this flag being set equal to

one (off), the object would again meet the requirements of INDEX = >
ONPOS

(OBJ #) as soon as the ONFLAG (OBJ #) was zero. The object

would appear every 38 screen cycles after it first appeared until INDEX wrap-

ped around to become zero again. The object should appear only once over the

(0-255) INDEX cycle. Incidentally, once all objects have been tested and plot-

ted and INDEX = 0 again, the program resets all USFLAG
(OBJ #) =0 so

that they will reappear over the same terrain if they are still alive.

Collisions are tested during the draw routine. The collision flag, KILL, is set

if any lit pixel occupies the screen positions, where an alien or saucer shape is

drawn. The test is made by logically ANDing the shape with the screen. A non-

zero value will set the flag. If a collision is detected, the alien is immediately

XDRAWn off the screen, and both the ALIVE flag and the ONFLAG are set

to zero (off) for that object. Of course, in a real game, you wouldn't have an

alien simply disappear, but would either plot the shape of an explosion or blow
it up dramatically; a fitting end that any alien who travels so far and fights so

valiantly deserves.

I'll admit that the routine is quite complex and did require considerable

planning and thought, but I hope that the accompanying flow chart will make
it clear. Remember that this code is looped for each object successively until all

objects are tested. Only then does it increment INDEX before proceeding on
with the rest of the program.

Flexibility for displaying a variety and a large number of shapes, plus the

ability to change the placement of these shapes, was designed into the program.

This becomes extremely helpful during the play test when the quantity of

targets and types are liable to change frequently. Ground based laser, radar

and rocket bases, plus a dozen city buildings were envisioned as targets spread

out over seven screens. While only eight different shapes were contemplated,

ten of one type might be needed, while only three of another type might be

used.

Because of this special need, a table called SHPADR was conceived. It

would hold the shape type for each, and as many as 256 targets. The shapes

would be stored in a shape table called SHAPES. Since each shape was two

bytes wide by eight lines deep, and we need both even and odd offset shape

tables for color, thirty two bytes would be required for each shape. To keep the

243

table within one page boundary
(256 bytes), the scheme was limited to eight

shapes. &

SHAPES SHAPE #0 EVEN
SHAPE #1 EVEN

SHAPE #7 EVEN
SHAPE #0 ODD

THE 8 ODD OFFSET SHAPES
FOLLOW THE 8 EVEN OFFSET
SHAPES IN THE TABLE
CALLED SHAPES.

Another table, called SHPLO, is used to reference the lo byte of each shape.
1 he values in this table are permanently set, starting at $00 and increasing by
$10 with each shape. However, because we are using only two shapes in this
example, and loading the shape table after assembling is an extra step it is
easier during program development to have the assembler construct the table
lor us by using the DFB pseudo-op code to define the lo order byte.
Thus, the SHPLO table is constructed as follows for the two shapes:

SHPLO DFB SHAPES ;L0 BYTE ALIEN EVEN OFFSET
DFB SHAPES+$10 ;L0 BYTE SAUCER EVEN OFFSET
DFB SHAPES+$20 ;L0 BYTE ALIEN ODD OFFSET
DFB SHAPES+$30 ;L0 BYTE SAUCER ODD OFFSET

The table SHPADR for seven objects either points to shape #0 (alien) orshape #1 (saucer). It actually indexes into SHPLO to set the proper pointers.

EVEN LDY SHPADR,

Y

LDA SHPLO,

Y

STA SHPL

; WHERE X IS THE OBJECT #
; PROPER L0 BYTE OF EVEN OFFSET SHAPE

the °dd is similar, except you have to index
hall of SHPLO which, in this case, begins with the third byte.

into the odd

ODD LDY
LDA
STA

SHPADR,

X

SHPL0+2 , Y ; PROPER L0 BYTE OF ODD OFFSET SHAPE

244

#0 #1 #2 #3 #4 #5 #6 #7

For example, if you were to look for object #2 (X reg = 2), which is an even
number, the even code would reference $01 for the SHPADR table. This in

turn would point to the #1 element in SHPLO. Thus, the code would be stored

$10 in SHPL. The high byte $69 would be stored in SHPH.
In the event that you chose to place these tables into a permanent location,

skip the construction of the SHPLO table. Instead, the SHPADR table con-
tains the lo byte for each shape. The SHPADR table’s length is doubled, for it

now contains the locations of both the even and odd shapes.

SHAPES $7000
$7008
$7010
$7018

SHAPE #0 EVEN
SHAPE #1 EVEN
SHAPE #0 ODD
SHAPE #1 ODD

SHPADR

#0 #1 #2 #3 #4 #5 #6 #7

00 00 08 00 00 00 00 08

10 10 18 10 10 10 18

The corresponding code is as follows:

EVEN LDY SHADR, X

STA SHPL

ODD LDY SHPADR+8 ,

X

STA SHPL

245

You can see that this is actually simpler code. If you wish to keep separate
shape tables independent ofthe main program’s code, then this is the preferred
method. However, it does involve loading your shape table into memory when
testing a program.

ORDER OF EVENTS IN GAME

The sequence of events in any game is important. Sometimes the order is
dictated by tests performed by various routines. It becomes obvious that you
can t test for a collision of an alien with a laser beam unless the laser is drawn
on the screen first. You can’t determine if your ship collides with an alien
unless the ship is drawn last. Unfortunately, something is always last. A colli-
sion of the ship with an alien at this point in the sequence requires testing each
alien’s screen coordinates to determine which one hit the ship.

The mountains were drawn afterwards to minimize the objects’ screen
flicker. Since the mountain routine takes considerably longer to draw than the
rest of the objects combined, it acts as a time delay, allowing the objects to re-
main on the screen longer than they are off. Because the mountains are drawn
after the ship’s collision test, a separate test was devised for mountain colli-
sions. The code compares the ship’s vertical position with the vertical value of
the mountain data drawn directly beneath it. The ship’s vertical position must
be less than the value referenced in the mountain data table (i.e, ship is above
mountains). Remember that MTOFFL and MTOFFH points to the begin-
ning position in the table from which the scroll subroutine draws the next 280
points of the mountain background. The tip of the ship is located at X =84 or
$55. The collision test is at the nose, so $55 is added to MTOFFL. Since the
carry is not cleared when $55 is added to the offset location of the mountain

U-
overflow in the lo Me, which is a carry set, automatically increments

the hi byte value. Both the lo and hi byte values are stored at $09 and $0A
respectively, in the zero page. These were chosen as scratch memory locations
in zero page to do an indirect indexed load, (LDA ($09),Y) .where the Y
register is zero. This obtains the value of the mountain pixel directly below the
ship s nose, and with only one instruction! This is compared with the vertical
position of the ship’s bottom. If the value in the mountain table is greater there
IS no collision.

’

247

211 ^DETECT FOR MT COLLISION
212 LDA PADDLEL
213 CLC
214 ADC #$55 ;TIP OF SHIP @84
215 STA $09
216 LDA PADDLEH
217 ADC #$40 ; LOCATION OF MOUNTAIN TABLE
218 STA $0A
219 LDY #$00
220 CLC
221 LDA VERT
222 ADC #$08 ; BECAUSE PDL IS AT TOP OF PLANE-
223 STA TEMP ; AND MOUNTAINS HIT BOTTOM
224 LDA ($09),

Y

225 CMP TEMP
226 BGE NOHIT
227 JMP EXPLODE
228 NOHIT LDA VERT

1 ^COMPLETE SCROLLING GAME CODE
2 ORG $6000

6000: 4C 21 60 3 JMP PROG ; JUMP TO START OF CODE
4 COUNT DS 1

5 INDEX DS 1

6 PADDLEL DS 1

7 PADDLEH DS 1

8 PDL DS 1

9 TEMP DS 1

10 TEMPI DS 1

11 SBLOCK DS 1

12 EBLOCK DS 1

13 VERT DS 1

14 TVERT DS 1

15 HORIZ DS 1

16 OBJ DS 1

17 LNGH DS 1

18 DEPTH DS 1

19 SLNGH DS 1

20 SHOT DS 1

21 LFLAG DS 1

22 ESET DS 1

23 BVERT DS 1

24 TBVERT DS 1

25 BVELY DS 1

26 BHORIZ DS 1

27 BMLOCK DS 1

28 TBMLOCK DS 1

29 KILL DS 1

30 KILLNUM DS 1

31 SCOREA DS 1

32 SCOREB DS 1

33 SCOREC DS 1

34 HIRESL EQU $26
35 HIRESH EQU HIRESL+$1
36 SHPL EQU $50
37 SHPH EQU SHPL+$1
38 SSHPL EQU $52
39 SSHPH EQU $53
40 STESTL EQU $54
41 STESTH EQU STESTL+$

1

42 BOMBL EQU $56
43 BOMBH EQU BOMBL+$

1

44 PREAD EQU $FB1E
6021: AD 50 CO 45 PROG LDA $C050
6024: AD 52 CO 46 LDA $C052
6027: AD 57 CO 47 LDA $C057
602A: 20 A4 62 48 JSR CLRSCR

49 #

50 *1 NIT I L I Z A T I 0 N

51 *

602D: A9 00 52 LDA #$00
602F : 8D 14 60 53 STA LFLAG
6032: 8D 1A 60 54 STA BMLOCK
6035: 8D 1C 60 55 STA KILL
6038: 8D 13 60 56 STA SHOT

57 *INITILIZE SCORE & PUT ON SCREEN
603B: A9 20 58 SCOREI LDA #$20
603D: 85 27 59 STA HIRESH
603F: A9 ID 60 LDA #$1D ; LOCATION OF SCORE WORDS

249

6041
6043
6045
6048
604A
604C
604E
6050
6053
6055
6058
605B
605D
6060
6063

6066:
6068:
606B:

606D:
606F:

6071:
6073:
6075:
6077:
6079:
607B:

607D:

6080:
6082:
6085:
6088:

608B:
608D:
6090:
6092:
6094:
6096:
6099:
609A:
609D:
609F:
60A2:
60A3:
60A5:
60A7:
60A9:

60AC:

60AF:

60B2:
60B4:
60B7

:

60BA:
60BD:
60C0:

85 26 61 STA HIRESL
A9 05 62 LDA #$05
8D 10 60 63 STA LNGH
A9 6A 64 LDA #>SC0REWD
85 51 65 STA SHPH
A9 08 66 LDA #<SCOREWD
85 50 67 STA SHPL
20 E8 66 68 JSR SCOREDR ;PUT WORDS ON SCREEN
A9 00 69 LDA #$00
8D IF 60 70 STA SCOREB
8D 20 60 71 STA SCOREC
A9 FF 72 LDA #$FF
8D IE 60 73 STA SCOREA

; FIRST TIME SCORE USED WILL—
8D ID 60 74 STA KILLNUM ; INCREMENT TO 0
20 5D 66 75 JSR SCORE

76 "INITIALIZE SHIP POSITION
A9 03 77 LDA #$03
8D 12 60 78 STA SLNGH
A9 D7 79 LDA #<SHIP
85 52 80 STA SSHPL
A9 68 81 LDA #>SHIP
85 53 82 STA SSHPH
A9 BF 83 LDA #<MSHIP
85 54 84 STA STESTL
A9 68 85 LDA #>MSHIP
85 55 86 STA STESTH
A9 50 87 LDA #$50
8D 0C 60 88 STA VERT

89 "INITIALIZE START OF SCROLL
A9 00 90 LDA #$00
8D 04 60 91 STA INDEX
8D 05 60 92 STA PADDLEL
8D 06 60 93 STA PADDLEH

94
95 *M A I N P R 0 G R A M LOOP
96
97 "READ PADDLE #1

A2 01 98 START LDX #$01
20 IE FB 99 JSR PREAD
CO B8 100 CPY #$B8 ;CLIP VALUE (0-183)
90 02 101 BLT SKIPP
AO B7 102 LDY #$B7
8C 07 60 103 SKIPP STY PDL
98 104 TYA
CD OC 60 105 CMP VERT ;PADDLE<VERT POS THEN SUBTRACT 5
BO IE 106 BGE PADDLE

3

AD OC 60 107 LDA VERT
38 108 SEC
E9 05 109 SBC #$05
BO 08 110 BGE PADDLE1 ;MAKE SURE =>0
A9 00 111 LDA #$00
8D OC 60 112 STA VERT
8D OD 60 113 STA TVERT
CD 07 60 114 PADDLE

1

CMP PDL ; DON'T WANT TO GO PAST PADDLE POS
BO 03 115 BGE PADDLE2
AD 07 60 116 LDA PDL
8D OC 60 117 PADDLE2 STA VERT
4C D3 60 118 JMP PADDLE6
CD OC 60 119 PADDLE3 CMP VERT

;
PADDLE>VERT POS THEN ADD 5

FO OB 120 BEQ PADDLE4

250

VERT60C2
60C5
60C6
60C8
60CB
60CD
60DO
60D3
60D6

60D9:
60DB:

60DE:
60E0:

60E2:
60E4:
60E7:
60EA:
60ED:
60EF:
60F2:
60F5:
60F7:
60FA:
60FD:
60FF:

6102:
6104:
6107:
6109:

610C:
610F:
6111:
6114:
6117:
611A:

611C:
611F:

6122:
6124:

6127:
6129:
612B:
612C:
61 2F:
6132:
6135:
6138:

613B:
613E:
6141:
6144:
6147:
6149:
614B:
614D:
6150:
6153:

6156:
6159:

AD 0C 60 121 LDA
18 122 CLC
69 05 123 ADC #$05
CD 07 60 124 CMP PDL
90 03 125 BLT PADDLE5
AD 07 60 126 PADDLE4 LDA PDL
8D OC 60 127 PADDLE5 STA VERT
8D OD 60 128 PADDLE6 STA TVERT
20 D3 63 129 JSR LASER

130 *PUT ALIEN OBJECTS ON
A2 00 131 LDX #00
8E OF 60 132 STX OBJ
A9 69 133 LDA #>SHAPES
85 51 134 STA SHPH
A9 02 135 NXT LDA #$02
8D 10 60 136 STA LNGH
AE OF 60 137 LDX OBJ
BD 98 68 138 LDA ALIVE, X
DO 03 139 BNE TEST
4C 7D 61 140 JMP NOBJ
BD A6 68 141 TEST LDA ONFLAG,

X

DO 3E 142 BNE UPDATE
BD AD 68 143 LDA ONPOS

,
X

CD 04 60 144 CMP INDEX
BO 7E 145 BGE NOBJ
BD 9F 68 146 LDA USFLAG,

X

FO 03 147 BEQ TEST1
4C 7D 61 148 JMP NOBJ
A9 01 149 TEST1 LDA #$01
9D A6 68 150 STA ONFLAG,

X

9D 9F 68 151 STA USFLAG,

X

A9 26 152 LDA #$26
9D 8A 68 153 STA TABLEX,X
BC B 68 154 LDY SHPADR ,

X

B9 BB 68 155 LDA SHPLO ,

Y

85 50 156 STA SHPL
BC 91 68 157 LDY TABLEY ,

X

B9 OA 67 158 LDA YVERTL ,

Y

85 26 159 STA HIRESL
B9 CA 67 160 LDA YVERTH ,

Y

85 27 161 STA HIRESH
AO 26 162 LDY #$26
98 163 TYA
9D 8A 68 164 STA TABLEX ,

X

20 4E 63 165 JSR DRAW
4C 7D 61 166 JMP NOBJ
AE OF 60 167 UPDATE LDX OBJ
20 9F 63 168 JSR DSETUP
20 7D 63 169 JSR XDRAW
AE OF 60 170 LDX OBJ
DE 8A 68 171 DEC TABLEX,

X

BD 8A 68 172 LDA TABLEX,

X

C9 00 173 CMP #$00
10 08 174 BPL PASS
A9 00 175 LDA #$00
9D A6 68 176 STA ONFLAG,

X

4C 7D 61 177 JMP NOBJ
AE OF 60 178 PASS LDX OBJ
20 9F 63 179 JSR DSETUP
20 4E 63 180 JSR DRAW

; DON'T WANT TO GO PAST PADDLE POS

;FIRE LASER
SCREEN AT PROPER TIMES

;GET HI BYTE OF SHAPES

;EACH SHAPE 2 BYTES WIDE

; ALIVE?

;IS ONFLAG ALREADY ON?

; IS USED ALREADY FLAG ON?

;SET ONFLAG ON

; UPDATE TABLE
; WHICH TYPE SHAPE
; WHERE LO SHAPE IS

;GET Y POSITION

;THIS IS X=38 FAR RIGHT

; UPDATE TABLE

;MOVE OBJECT LEFT ONE

!>=0 THEN STILL ON SCREEN

615C: AD 1C 60 181 LDA KILL
615F: C9 00 182 CMP #$00
6161: FO 1A 183 BEQ NOBJ
6163: AE OF 60 184 LDX OBJ
6166: 20 9F 63 185 JSR DSETUP
6169: 20 7D 63 186 JSR XDRAW
61 6C: AE OF 60 187 LDX OBJ
616F: A9 00 188 LDA #$00
6171: 9D 98 68 189 STA ALIVE,

X

6174: 9D A6 68 190 STA ONFLAG ,

X

6177: 8D 1C 60 191 STA KILL
617A: 20 5D 66 192 JSR SCORE
617D: EE OF 60 193 NOBJ INC OBJ
6180: AD OF 60 194 LDA OBJ
6183: C9 07 195 CMP #$07
6185: FO 03 196 BEQ TEST2
6187: 4C E2 60 197 JMP NXT
618A: EE 04 60 198 TEST2 INC INDEX
618D: AD 04 60 199 LDA INDEX
6190: DO OC 200 BNE PASS1
6192: AO 00 201 LDY #00
6194: A9 00 202 AGAIN LDA #$00
6196: 99 9F 68 203 STA USFLAG,

Y

6199: C8 204 INY
619A: CO 08 205 CPY #$08
619C: DO F6 206 BNE AGAIN
619E: 20 33 63 207 PASS1 JSR SSETUP
61Al: 20 BE 62 208 JSR SDRAW
61A4: 20 89 64 209 JSR BOMB
61A7: 20 01 62 210 JSR SCROLL

211 ^DETECT FOR MT COLLISION
61AA: AD 05 60 212 LDA PADDLEL
61AD: 18 213 CLC
61AE: 69 55 214 ADC #$55
61B0: 85 09 215 STA $09
61B2: AD 06 60 216 LDA PADDLEH
61B5: 69 40 217 ADC #$40
61B7: 85 OA 218 STA $0A
61B9: AO 00 219 LDY #$00
61BB: 18 220 CLC
61BC: AD OC 60 221 LDA VERT
61BF: 69 08 222 ADC #$08
61C1 : 8D 08 60 223 STA TEMP
61C4: B1 09 224 LDA ($09),

Y

61C6: CD 08 60 225 CMP TEMP
61C9: BO 03 226 BGE NOHIT
61CB: 4C 13 65 227 JMP EXPLODE
61CE: AD OC 60 228 NOHIT LDA VERT
61D1 : 8D OD 60 229 STA TVERT
61D4: 20 33 63 230 JSR SSETUP
61D7: 20 FD 62 231 JSR SXDRAW
61DA: 20 14 64 232 FIN JSR XLASER
61DD: 20 F7 64 233 JSR BOMBX

; REMOVE ALIEN

;SET OBJECT TO DEAD
;TURN OFF ON FLAG
; RESET KILL DETECTOR

;NEXT OJECT

;DONE WITH ALL?

; UPDATE SCROLL COUNTER

; RESET ALL ALREADY USED FLAGS TO

;TIP OF SHIP @84

; LOCATION OF MOUNTAIN TABLE

; BECAUSE PDL IS AT TOP OF PLANE
;AND MOUNTAINS HIT BOTTOM

234
61EO: AD ID 60 235
61E3: C9 07 236
61E5: DO 16 237
61E7: AD 04 60 238
61EA: DO 11 239
61EC: A9 00 240

*TEST IF ALL ALIENS KILLED AND RESET WHEN INDEX=0
RSETAL LDA KILLNUM

CMP #$07
BNE RSETAL2
LDA INDEX ; CHECK IF START OF TERRAIN
BNE RSETAL2
LDA #$00 ; RESET

0

252

61EE: 8D ID 60 241 STA KILLNUM
61F1

:

A2 00 242 LDX #$00
61F3: A9 01 243 LDA #$01
61F5: 9D 98 68 244 RSETAL1 STA ALIVE,

X

61F8: E8 245 INX
61F9: E0 07 246 CPX #$07
61FB: DO F8 247 BNE RSETAL1
61FD: EA 248 RSETAL2 NOP
61FE: 4C 8B 60 249 JMP START

250 *

251 *S U B R 0 U TINES ********
252 *

253 •SCROLLING ROUTINE SETUP
254

6201: AD 04 60 255 SCROLL LDA INDEX ; COUNTER FOR WHERE YOU ARE INTO
256 ;TERRAIN

6204: C9 00 257 CMP #$00 ; IF ZERO RESET GROUND TABLE POINTER
6206: FO 11 258 BEQ RSET
6208: 18 259 CLC
6209: AD 05 60 260 LDA PADDLEL ;EACH CYCLE ADVANCE 7 MORE INTO —
620C: 69 07 261 ADC #$07 ; GROUND ARRAY
620E: 8D 05 60 262 STA PADDLEL
6211: 90 03 263 BCC C
6213: EE 06 60 264 INC PADDLEH
6216: 4C 21 62 265 C JMP SCONT
6219: A9 00 266 RSET LDA #$00 ; RESET GROUND POSITION BACK TO 0
621B: 8D 05 60 267 STA PADDLEL
621E: 8D 06 60 268 STA PADDLEH

269 *

270 •SCROLLING ROUTINE
271

6221: A9 02 272 SCONT LDA #$02
6223: 8D 03 60 273 STA COUNT ; COUNTER SO DRAWS 1ST TIME
6226: A9 01 274 ERASE LDA #$01
6228: 85 08 275 STA $08 ;BIT COUNTER
622A: A9 00 276 LDA #$00 ; START OF ARRAY LO BYTE
622C: 85 06 277 STA $06
622E: A9 40 278 LDA #$40 ; START OF ARRAY HI BYTE
6230: 85 07 279 STA $07
6232: AD 05 60 280 LDA PADDLEL ; OFFSET INTO ARRAY LO BYT
6235: 85 04 281 STA $04
6237: AD 06 60 282 LDA PADDLEH ; OFFSET HI BYTE
623A: 29 07 283 AND #$07 ;S0 NOT BEYOND TABLE
623C: 85 05 284 STA $05
623E: A2 00 285 LDX #$00
6240: 18 286 LOOP CLC
6241: A5 04 287 LDA $04 ;OFFSET INTO TABLE (LO)
6243: 65 06 288 ADC $06 ;ADD BASE ADDRESS (LO)
6245: 85 02 289 STA $02
6247: A5 05 290 LDA $05 ; (HI)
6249: 65 07 291 ADC $07
624B: 85 03 292 STA $03 ;REG 2&3 ACTUAL ADDRESS OF SPECI-

293 *_ ;FIC BYTE IN TABLE
624D: AO 00 294 LDY #$00
624F: B1 02 295 LDA ($02),

Y

; ACTUAL VALUE AT THAT BYTE
6251: A8 296 TAY
6252: B9 OA 67 297 LDA YVERTL,

Y

; ADDRESS OF LINE ON SCREEN (LO)
6255: 85 02 298 STA $02
6257: B9 CA 67 299 LDA YVERTH,

Y

; (HI)
625A: 85 03 300 STA $03

253

625C: 8A 301
62 5D: A8 302
625E: B1 02 303

304
6260: 45 08 305
6262: 91 02 306
6264: E6 04 307
6266: DO 09 308
6268: 18 309
6269: A5 05 310
626B: 69 01 311
626D: 29 07 312
626F: 85 05 313
6271: 06 08 314

315
6273: 10 CB 316

317
6275: A9 01 318
6277: 85 08 319
6279: E8 320

321

627A: EO 28 322
627C: DO C2 323
627E: CE 03 60 324
6281: AD 03 60 325
6284: C9 01 326
6286: 90 IB 327

328
329
330

6288: AD 00 CO 331
628B: 10 10 332
628D: C9 9B 333
628F: DO OC 334
6291: 2C 10 CO 335
6294: AD 00 CO 336
6297: 10 FB 337
6299: C9 AO 338
629B: DO 03 339
629D: 2C 10 CO 340

341
62A0: 4C 26 62 342

343
62A3: 60 344

345
346
347

62A4: A9 00 348
62A6: 85 26 349
62A8: A9 20 350
62AA: 85 27 351
62AC: AO 00 352
62AE: A9 00 353
62B0: 91 26 354
62B2: C8 355
62B3: DO FB 356
62B5: E6 27 357
62B7: A5 27 358
62B9: C9 40 359
62BB: 90 EF 360

SKIP
»_

*_

TXA
TAY
LDA ($02), Y

EOR $08
STA ($02),

Y

INC $04
BNE SKIP
CLC
LDA $05
ADC #$01
AND #$C7
STA $05
ASL $08

BPL LOOP

LDA #$01
STA $08
INX

CPX #$28
BNE LOOP
DEC COUNT
LDA COUNT
CMP #$01
BLT SKIP1

;X IS OFFSET INTO HI-RES LINE

; CONTAINS ADDRESS OF BEGINNING LINE
;NOW OFFSET INTO LINE
;NOW LEFT HAND DOT ON

; INCREMENT OFFSET FOR NEXT DOT (LO)
; IF HAVEN'T CROSSED 256 THEN SKIP

;INC. HI ORDER OFFSET FOR NEXT DOT

; MAKES WRAP AROUND INTO TABLE—
I
(IF HIT END OF TABLE)

; SHIFT LEFT INTO BYTE FOR NEXT
;DOT TO PLOT
I
IF INTO BIT 7 THEN TOO FAR SO

i RESTORE TO 1

;
RESTORE BIT COUNTER TO 1

NEXT BYTE BECAUSE HAVE ALREADY
DONE 7 DOTS

SEE IF COMPLETELY ACROSS 40 BYTES

;IF=1 ONLY HAVE DRAWN TERRAIN
;TERRAIN ALREADY DRAWN&XDRAWN , DONE

“SINGLE STEP DEBUG PACKAGE
*

LDA $C000
BPL IGNORE
CMP #$9B
BNE IGNORE

CAUGHT BIT $C010
LDA $C000
BPL “-3

CMP #$A0
BNE IGNORE+3

IGNORE BIT $C010

KEY PRESSED?
EXIT IF NO KEY PRESSED
ESC KEY?

CLEAR STROBE
KEY PRESSED
LOOP BY BRANCHING BACK 3 BYTES
SPACE KEY?
NO DON'T CLEAR STROBE
CLEAR STROBE

JMP ERASE
*_

SKIP1 RTS
*

ONLY DRAWN SO FAR; NOW GO TO ERAS
TO DRAW AGAIN

“CLEAR SCREEN SUBROUTINE
*

CLRSCR LDA #$00
STA HIRESL
LDA #$20
STA HIRESH

CLR1 LDY #$00
LDA #$00

CLR2 STA (HIRESL),Y
INY
BNE CLR2
INC HIRESH
LDA HIRESH
CMP #$40
BCC CLR1

254

62BD: 60 RTS361

362
363
364
365

62BE: A9 00 366
62CO: 8D 15 60 367
62C3: AC 0D 60 368
62C6: 20 1C 63 369
62C9: A2 00 370
62CB: A1 54 371
62CD: 29 7F 372
62CF: 31 26 373
62D1: C9 00 374
62D3: FO 05 375
62D5: A9 01 376
62D7: 8D 15 60 377

378
62DA: A1 52 379
62DC: 51 26 380
62DE: 91 26 381
62E0: E6 54 382
62E2: E6 52 383
62E4: C8 384
62E5: CE 12 60 385
62E8: DO El 386
62EA: EE OD 60 387
62ED: CE 11 60 388
62FO: DO D1 389
62F2: AD 15 60 390
62F5: C9 00 391
62F7: FO 03 392
62F9: 4C 13 65 393
62FC: 60 394

395
396
397

62FD: AC OD 60 398
6300: 20 1C 63 399
6303: A2 00 400
6305: A1 52 401
6307: 51 26 402
6309: 91 26 403
630B: E6 52 404
630D: C8 405
630E: CE 12 60 406
6311: DO F2 407
6313: EE OD 60 408
6316: CE 11 60 409
6319: DO E2 410
631B: 60 411

412
413
414

631C: B9 OA 67 415
631F: 18 416
6320: 6D OE 60 417
6323: 85 26 418
6325: B9 CA 67 419
6328: 85 27 420

DRAW SHIP SUBROUTINE
DRAW SHAPE ONE LINE AT A TIME-LNGH BYTES ACROSS

SDRAW LDA #$00
STA ESET

SDRAW1 LDY TVERT ; VERTICAL POSITION
JSR GETADR
LDX #$00

SDRAW2 LDA (STESTL.X) ;GET BYTE OF SHIP MASK SHAPE
AND #$7F ;MASK OUT HI BIT
AND (HIRESL) ,Y ; (AND) IT AGAINST SCREEN
CMP #$00 ; IF ANYTHING IN WAY GET>0
BEQ SDRAW3
LDA #$01 ;SET BECAUSE IF DON'T FINISH DRAW-
STA ESET ; ING SHIP .PIECE LEFT WHEN XDRAW

* ; DURING EXPLOSION
SDRAW3 LDA (SSHPL.X) ;GET BYTE OF SHIP'S SHAPE

EOR (HIRESL).

Y

STA (HIRESL), Y ;PLOT
INC STESTL ;NEXT BYTE OF MASK
INC SSHPL

; NEXT BYTE OF TABLE
INY ;NEXT SCREEN POSITION
DEC SLNGH
BNE SDRAW2 ;IF LINE NOT FINISHED BRANCH
INC TVERT ; OTHERWISE NEXT LINE DOWN
DEC DEPTH
BNE SDRAW1 ;DONE DRAWING?
LDA ESET ; IS EXPLOSION FLAG SET?
CMP #$00
BEQ SDRAW4 ;N0!, EXIT
JMP EXLODE ; YES ! , EXPLODE SHIP

SDRAW4 RTS
*

*XDRAW SHIP SUBROUTINE
*

SXDRAW LDY TVERT ; PADDLE VALUE
JSR GETADR
LDX #$00

SXDRAW2 LDA (SSHPL ,X)

EOR (HIRESL),Y
STA (HIRESL),Y
INC SSHPL
INY
DEC SLNGH
BNE SXDRAW2
INC TVERT
DEC DEPTH
BNE SXDRAW
RTS

*GETADR SUBROUTINE

GETADR LDA YVERTL,

Y

;LOOK UP LO BYTE OF LINE
CLC
ADC HORIZ ; ADD DISPLACEMENT INTO LINE
STA HIRESL
LDA YVERTH ,

Y

;LOOK UP HI BYTE OF LINE
STA HIRESH

255

632A
632D
6330
6332

6333
6335
6337
6339
633B
633D
6340
6342
6345
6347
6 34

A

634D

634E:

6350:

6352:
6354:
6356:
6358:
635A:
635D:
635F:
6361:
6363:
6365:
6366:
6368:
636A:
636C:

636E:
6370:
6372:
6374:
6377:
6379:

637A:
637C:

637D:

637F

:

6381:
6383:
6385:
6387:
6388:
638A:

638C:
638E:

AD 08 60 421 LDA TEMP
8D 12 60 422 STA SLNGH RESTORE VARIABLE
AO 00 423 LDY #$00
60 424 RTS

425
426 *SHIP SET UP SUBROUTINE
427

A9 D7 428 SSETUP LDA #<SHIP SHAPE TABLE LOCATION
85 52 429 STA SSHPL
A9 68 430 LDA #>SHIP
85 53 431 STA SSHPH
A9 08 432 LDA #$08
8D 11 60 433 STA DEPTH
A9 09 434 LDA #$09
8D OE 60 435 STA HORIZ
A9 03 436 LDA #$03
8D 12 60 437 STA SLNGH
8D 08 60 438 STA TEMP
60 439 RTS

440 *

441 *DRAW ALIEN SHIPS & TARGETS SUBROUTINE
442 *DRAW SHAPE ONE COLUMN AT A TIME
443

A2 00 444 DRAW LDX #$00
A1 50 445 DRAW2 LDA (SHPL, X)
29 7F 446 AND #$7F MASK OUT HI BIT
31 26 447 AND (HIRESL)

,
Y (AND) IT AGAINST SCREEN

C9 00 448 CMP #$00 IF ANYTHING IN WAY GET>0
FO 03 449 BEQ DRAW3 NO COLLISION, BRANCH TO DRAW3
EE 1C 60 450 INC KILL COLLISION! INCREMENT KILL
A1 50 451 DRAW3 LDA (SHPL, X) LOAD SHAPE BYTE
51 26 452 EOR (HIRESL) ,Y (EOR) WITH SCREEN
91 26 453 STA (HIRESL),Y PLOT
A5 27 454 LDA HIRESH
18 455 CLC
69 04 456 ADC #$04
85 27 457 STA HIRESH
E6 50 458 INC SHPL
C9 40 459 CMP #$40
90 EO 460 BCC DRAW2
E9 20 461 SBC #$20
85 27 462 STA HIRESH
CE 10 60 463 DEC LNGH
FO 03 464 BEQ DRAW4
C8 465 INY
DO D4, 466 BNE DRAW2
60 467 DRAW4 RTS

468 *

469 *XDRAW ALIEN SHIPS & TARGETS SUBROUTINE
470 *

A2 00 471 XDRAW LDX #$00
A1 50 472 XDRAW2 LDA (SHPL,X)
51 26 473 EOR (HIRESL) ,Y

91 26 474 STA (HIRESL),

Y

A5 27 475 LDA HIRESH
18 476 CLC
69 04 477 ADC #$04
85 27 478 STA HIRESH
E6 50 479 INC SHPL
C9 40 480 CMP #$40

256

6390: 90 ED 481 BCC XDRAW2
6392: E9 20 482 SBC #$20
6394: 85 27 483 STA HIRESH
6396: CE 10 60 484 DEC LNGH
6399: FO 03 485 BEQ XDRAW3
639B: C8 486 I NY
DRAW2
639E: 60 488 XDRAW3 RTS

489 ft

490 ^DRAWING ROUTINES SETUP
491 ft

639F: BC 91 68 492 DSETUP LDY TABLEY,

X

63A2: B9 OA 67 493 LDA YVERTL,

Y

63A5: 85 26 494 STA HIRESL
63A7 : B9 CA 67 495 LDA YVERTH,

Y

63AA: 85 27 496 STA HIRESH
63AC: A9 02 497 LDA #$02
63AE: 8D 10 60 498 STA LNGH
63B1 : 18 499 CLC
63B2: BD 8A 68 500 LDA TABLEX,

X

63B5: 4A 501 LSR
63B6: BO OB 502 BCS ODD

503 ft_

63B8: BC B4 68 504 EVEN LDY SHPADR ,

X

63BB: B9 BB 68 505 LDA SHPLO ,

Y

63BE: 85 50 506 STA SHPL
63CO: 4C CB 63 507 JMP GOON
6X3: X B4 68 508 ODD LDY SHPADR,

X

63C6: B9 BD 68 509 LDA SHPLO+2 ,

Y

63C9: 85 50 510 STA SHPL
63CB: X 8A 68 511 GOON LDY TABLEX,

X

63CE: A9 69 512 LDA #>SHAPES
63D0: 85 51 513 STA SHPH
63D2: 60 514 RTS

515 ft

516 *LASER SUBROUTINE
517 ft

63D3: AD 62 CO 518 LASER LDA $C062
63D6: 30 08 519 BMI FIRE1
63D8: A9 00 520 LDA #$00
63DA: 8D 14 60 521 STA LFLAG
63DD: 4C 13 64 522 JMP NOSHOT
63E0: AD 14 60 523 FIRE1 LDA LFLAG
63E3: C9 01 524 CMP #$01
63E5: BO 2C 525 BGE NOSHOT
63E7: A9 01 526 LDA #$01
63E9: 8D 13 60 527 STA SHOT
63EC: 8D 14 60 528 STA LFLAG
63EF: 18 529 CLC
63F0: AD OC 60 530 LDA VERT
63F3: 69 07 531 ADC #$07
63F5: A8 532 TAY
63F6: A9 OC 533 LDA #$0C
63F8: 8D OE 60 534 STA HORIZ
63FB: 20 1C 63 535 JSR GETADR
63FE: A2 OE 536 LDX #$0E
6400: A9 AA 537 LASER

1

LDA #$AA
6402: 51 26 538 EOR (HIRESL) ,Y

6404: 91 26 539 STA (HIRESL),

Y

6406: E6 26 540 INC HIRESL

;TEST FOR EVEN OR ODD OFFSET FROM
;X VALUE IN TABLEX

;NEG IF BUTTON PRESSED

; BUTTON NOT PRESSED, SET FLAG TO 0

; IS BUTTON BEING HELD DOWN?

;SET LASER FIRED FLAG
;SET BUTTON PRESSED FLAG

;TOP OF SHIP

;Y REG CONTAINS VERT. LSER POS.
; START AT HORIZ=$OC

;FIND ADDRESS OF LASER BEAM LINE
;SET UP LOOP FOR E TIMES
;DRAW PAIRS OF AA & D5 BYTES(RED)
;BY ORING AGAINST SCREEN

;NEXT SCREEN POSITION

6408: A9 D5 541 LDA #$D5

640A: 51 26 542 EOR (HIRESL) ,Y

640C: 91 26 543 STA (HIRESL) ,Y

640E: E6 26 544 INC HIRESL ;NEXT SCREEN POSITION

6410: CA 545 DEX ; DECREMENT INDEX TO LOOP

6411: DO ED 546 BNE LASER

1

;DONE?

6413: 60 547 NOSHOT RTS ; YES ! EXIT

548 *XDRAW LASER SUBROUTINE

6414: AD 13 60 549 XLASER LDA SHOT

6417: C9 01 550 CMP #$01 ; HAS LASER BEEN SHOT?

6419: DO 24 551 BNE NXSHOT ; NO! SKIP XDRAWING LASER

64 IB: 18 552 CLC

641C: AD OC 60 553 LDA VERT

64 IF: 69 07 554 ADC #$07

6421: A8 555 TAY

6422: A9 OC 556 LDA #$0C

6424: 8D OE 60 557 STA HORIZ

6427; 20 1C 63 558 JSR GETADR

642A: A2 OE 559 LDX #$0E

642C: A9 AA 560 LASER2 LDA #$AA

642E: 51 26 561 EOR (HIRESL),

Y

6430: 91 26 562 STA (HIRESL),

Y

6432: E6 26 563 INC HIRESL

6434: A9 D5 564 LDA #$D5

6436: 51 26 565 EOR (HIRESL),

Y

6438: 91 26 566 STA (HIRESL),

Y

643A: E6 26 567 INC HIRESL

64 3C: CA 568 DEX

643D: DO ED 569 BNE LASER2

643F

:

A9 00 570 NXSHOT LDA #$00 ; RESET LASER FIRED FLAG TO OFF

6441: 8D 13 60 571 STA SHOT

6444: 60 572 RTS

573
574 ^DRAWING ROUTINES FOR BOMB

575 #

6445: A9 EF 576 BSET LDA #<SHBOMB ; ADDRESS BOMB SHAPE

6447: 85 56 577 STA BOMBL

6449: A9 68 578 LDA #>SHBOMB

644B: 85 57 579 STA BOMBH

644D: AD 19 60 580 LDA BHORIZ ; BOMB’S HORIZ. POSITION

6450: 8D OE 60 581 STA HORIZ

6453: A9 03 582 LDA #$03

6455: 8D 11 60 583 STA DEPTH

6458: 60 584 RTS

6459: AC 17 60 585 BDRAW LDY TBVERT ;BOMB VERT POS

645C: 20 1C 63 586 JSR GETADR

645F: A2 00 587 LDX #$00

6461: A1 56 588 LDA (BOMBL, X) ;GET ADDRESS OF BOMB SHAPE

6463: 91 26 589 STA (HIRESL), Y ; PLOT

6465: EE 17 60 590 INC TBVERT

6468: E6 56 591 INC BOMBL

646A: CE 11 60 592 DEC DEPTH

646D: DO EA 593 BNE BDRAW

646F: 60 594 RTS

6470: AC 17 60 595 BXDRAW LDY TBVERT

6473: 20 1C 63 596 JSR GETADR

6476: A2 00 597 LDX #$00

6478: A1 56 598 LDA (BOMBL, X)

647A: 51 26 599 EOR (HIRESL),

Y

647C: 91 26 600 STA (HIRESL),

Y

258

647E: EE 17 60 601 INC TBVERT
6481: E6 56 602 INC BOMBL
6483: CE 11 60 603 DEC DEPTH
6486: DO E8 604 BNE BXDRAW
6488: 60 605 RTS

606 *

607 *BOMB SUBROUTINE
608 *

6489: AD 61 CO 609 BOMB LDA $C061 ;NEG IF BUTTON PRESSED
648C: 30 03 610 BMI B0MB1
648E: 4C BD 64 611 JMP NODROP
6491: AD 1A 60 612 B0MB1 LDA BMLOCK
6494: C9 01 613 CMP #$01 ; IS BOMB STILL FALLING?
6496: BO 2

A

614 BGE FALLIN ; YES, GOTO FALLIN
6498: AD OC 60 615 DROP LDA VERT
649B: 18 616 CLC
649C: 69 09 617 ADC #$09
649E: 8D 16 60 618 STA BVERT ; INITIAL POSITION OF BOMB
64A1 : 8D 17 60 619 STA TBVERT
64A4: A9 OA 620 LDA #$0A ; STARTING HORIZ POSITION
64A6: 8D 19 60 621 STA BHORIZ
64A9: A9 00 622 LDA #$00 ; INITIAL VERTICAL VELOCITY
64AB: 8D 18 60 623 STA BVELY
64AE: A9 01 624 LDA #$01
64B0: 8D 1A 60 625 STA BMLOCK ; RESET TO ON
64B3: 8D IB 60 626 STA TBMLOCK ; RESET END OF FALL TO OFF
64B6: 20 45 64 627 JSR BSET
64B9: 20 59 64 628 JSR BDRAW ;DRAW BOMB
64BC: 60 629 RTS
64BD: AD 1A 60 630 NODROP LDA BMLOCK
64C0: FO 34 631 BEQ BOMB3 ;IS BOMB STILL FALLING
64C2: AD 18 60 632 FALLIN LDA BVELY
64C5: 18 633 CLC
64C6 : 69 05 634 ADC #$05 ; ADD ACCELERATION CONSTANT
64C8: 8D 18 60 635 STA BVELY ;NEW VERTICAL VELOCITY
64CB: 6D 16 60 636 ADC BVERT
64CE: 8D 17 60 637 STA TBVERT
64D1: 8D 16 60 638 STA BVERT ; BOMB'S NEW VERTICAL POSITION
64D4: AD 19 60 639 LDA BHORIZ
64D7: 69 01 640 ADC #$01 ; BOMB ' S HORIZ. VELOCITY (CONSTANT)
64D9: 8D 19 60 641 STA BHORIZ ; BOMB'S NEW HORIZ. POSITION

642 *TEMP DETECT FOR BOMB LANDING
64DC: AD 16 60 643 LDA BVERT
64DF: C9 BO 644 CMP #$B0 ; BOTTOM SCREEN?
64E1: 90 OD 645 BLT B0MB2

; NO ! THEN B0MB2
64E3: A9 BO 646 LDA #$B0
64E5: 8D 16 60 647 STA BVERT
64E8: 8D 17 60 648 STA TBVERT
64EB: A9 00 649 LDA #$00
64ED: 8D IB 60 650 STA TBMLOCK ;SET END OF BOMB FALL FLAG
64FO: 20 45 64 651 B0MB2 JSR BSET
64F3: 20 59 64 652 JSR BDRAW
64F6: 60 653 B0MB3 RTS

654 *BOMB XDRAW
64F7: AD 1A 60 655 BOMBX LDA BMLOCK ; IS BOMB STILL FALLING? (1=YES)
64FA: FO 16 656 BEQ BOMBX

1

;SKIP IF 0
64FC: 20 45 64 657 JSR BSET
64FF: AD 16 60 658 LDA BVERT
6502: 8D 17 60 659 STA TBVERT
6505: 20 70 64 660 JSR BXDRAW ; XDRAW BOMB

6508: AD IB 60 661 LDA TBMLOCK
650B: DO 05 662 BNE BOMBXI
650D: A9 00 663 LDA #$00
650F: 8D 1A 60 664 STA BMLOCK
6512: 60 665 B0MBX1 RTS

666 55
-

667 *EXPLOSION SUBROUTINE
668

6513: 20 IE 65 669 EXPLODE JSR EXPSUB
6516: A9 FE 670 LDA #$FE
6518: 20 A8 FC 671 JSR $FCA8
651B: 4C DA 61 672 JMP FIN
651E: AD OC 60 673 EXPSUB LDA VERT
6521: 8D OD 60 674 STA TVERT
6524: 20 33 63 675 JSR SSETUP
6527: 20 FD 62 676 JSR SXDRAW
652A: A9 04 677 EDRAW LDA #$04
65 2C: 8D 11 60 678 STA DEPTH
652F: A9 OA 679 LDA #$0A
6531: 8D OE 60 680 STA HORIZ
6534: AD OC 60 681 LDA VERT
6537: 18 682 CLC
6538: 69 04 683 ADC #$04
653A: 8D OD 60 684 STA TVERT
653D: AC OD 60 685 EDRAW1 LDY TVERT
6540: 20 1C 63 686 JSR GETADR
6543: A9 FF 687 LDA #$FF
6545: 51 26 688 EOR (HIRESL) ,

Y

6547: 91 26 689 STA (HIRESL) ,Y

6549: EE OD 60 690 INC TVERT
654C: CE 11 60 691 DEC DEPTH
654F: DO EC 692 BNE EDRAW1
6551: A9 80 693 LDA #$80
6553: 20 A8 FC 694 JSR $FCA8

695 *XDRAW SEQ1 --8 BLOCKS
6556: A9 00 696 LDA #$00
6558: 8D OA 60 697 STA SBLOCK
655B: A9 08 698 LDA #$08
655D: 8D OB 60 699 STA EBLOCK
6560: 20 1A 66 700 JSR EPLOT

701 *XDRAW BEGINING FLASH
6563: A9 04 702 EDRAW2 LDA #$04
6565: 8D 11 60 703 STA DEPTH
6568: A9 OA 704 LDA #$0A
656A: 8D OE 60 705 STA HORIZ
656D: 18 706 CLC
656E: AD OC 60 707 LDA VERT
6571: 69 04 708 ADC #$04
6573: 8D OD 60 709 STA TVERT
6576: AC OD 60 710 EDRAW3 LDY TVERT
6579: 20 1C 63 711 JSR GETADR
657C: B1 26 712 LDA (HIRESL),

Y

657E: 51 26 713 EOR (HIRESL),

Y

6580: 91 26 714 STA (HIRESL),

Y

6582: EE OD 60 715 INC TVERT
6585: CE 11 60 716 DEC DEPTH
6588: DO EC 717 BNE EDRAW3

718 *XDRAW SEQ2- 11 BLOCKS
658A: A9 08 719 LDA #$08
658C: 8D OA 60 720 STA SBLOCK

; RESET BOMB FALLING TO OFF

; XDRAW SHIP

; PLOT WHITE FIREBALL 4 LINES DEEP

;HORIZ POS SHIP’S CENTER

;VERT POS TOP OF SHIP

;TO REACH CENTER

; SHIP’S CENTER

; WHITE LINE

; NEXT LINE

;DONE?

; DELAY

260

658F: A9 13 721
6591: 8D OB 60 722
6594: 20 1A 66 723

724
6597: A9 00 725
6599: 8D OA 60 726
659C: A9 08 727
659E: 8D OB 60 728
65A1 : 20 1A 66 729

730
65A4: A9 13 731
65A6: 8D OA 60 732
65A9: A9 22 733
65AB: 8D OB 60 734
65AE: 20 1A 66 735

736
65B1 : A9 08 737
65B3: 8D OA 60 738
65B6: A9 13 739
65B8: 8D OB 60 740
65BB: 20 1A 66 741

742
65BE: A9 22 743
65C0: 8D OA 60 744
65C3: A9 32 745
65C5: 8D OB 60 746
65C8: 20 1A 66 747

748
65CB: A9 13 749
65CD: 8D OA 60 750
65D0: A9 22 751
65D2: 8D OB 60 752
65D5: 20 1A 66 753

754
65D8: A9 32 755
65DA: 8D OA 60 756
65DD: A9 44 757
65DF: 8D OB 60 758
65E2: 20 1A 66 759

760
65E5: A9 22 761
65E7: 8D OA 60 762
65EA: A9 32 763
65EC: 8D OB 60 764
65EF: 20 1A 66 765

766
65F2: A9 44 767
65F4: 8D OA 60 768
65F7: A9 56 769
65F9: 8D OB 60 770
65FC: 20 1A 66 771

772
65FF: A9 32 773
6601: 8D OA 60 774
6604: A9 44 775
6606: 8D OB 60 776
6609: 20 1A 66 777

778
660C: A9 44 779
660E: 8D OA 60 780

LDA #$13
STA EBLOCK
JSR EPLOT

*XDRAW SEQ1- 8 OFF
LDA #$00
STA SBLOCK
LDA #$08
STA EBLOCK
JSR EPLOT

*XDRAW SEQ3-15
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT

*XDRAW SEQ2-11 OFF
LDA #$08
STA SBLOCK
LDA #$13
STA EBLOCK
JSR EPLOT

*XDRAW SEQ4-16
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT

*XDRAW SEQ3-15 OFF
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT

*XDRAW SEQ5- 18

LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT

*XDRAW SEQ4-16 OFF
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT

*XDRAW SEQ6-18
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT

•*XDRAW SEQ5-18 OFF
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT

*XDRAW SEQ6-18 OFF
LDA #$44
STA SBLOCK

261

#$56
EBLOCK
EPLOT

6611: A9 56 781
6613: 8D OB 60 782
6616: 20 1A 66i 783
6619: 60 784

785
786
787

661A: AE OA 60 788
789

661D: A9 03 790
661F: 8D 11 60 791
6622: 18 792
6623: AD OC 60 793
6626: 69 04 794
6628: 18 795
6629: 7D 9A 69 796
662C: C9 00 797
662E: 90 21 798
6630: C9 CO 799
6632: BO ID 800
6634: 8D 09 60 801
6637: BD 44 69 802
663A: 8D OE 60 803
663D: AC 09 60 804
6640: 20 1C 63 805
6643: A9 FO 806
6645: 51 26 807
6647: 91 26 808
6649: CE 09 60 809
664C: CE 11 60 810
664F: DO EC 811
6651: E8 812
6652: EC OB 60 813
6655: DO C6 814
6657: A9 30 815
6659: 20 A8 FC 816
665C: 60 817

818
819
820

665D: EE ID 60 821
6660: EE IE 60 822
6663: AD IE 60 823
6666: C9 OA 824
6668: 90 29 825
666A : A9 00 826
666C: 8D IE 60 827
666F: EE IF 60 828
6672: AD IF 60 829
6675: C9 OA 830
6677: 90 1A 831
6679: A9 00 832
667B: 8D IF 60 833
667E: EE 20 60 834
6681: AD 20 60 835
6684: C9 OA 836
6686: 90 OB 837
6688: A9 00 838
668A: 8D IE 60 839
668D: 8D IF 60 840

LDA
STA

JSR
RTS

^EXPLOSION PLOTTING SUBROUTINE
*

EPLOT LDX SBLOCK ; LOCATION IN PARTICLE POSITION
;T0 START DRAWING

EPLOT

1

LDA #$03 ;EACH BLOCK 3 LINES DEEP
STA DEPTH

EL00P1 CLC
LDA VERT ;TOP OF SHIP
ADC #$04 ;NOW CENTER OF SHIP
CLC
ADC EOFFY ,

X

;ADD RELATIVE Y POS OF PARTICLE.
CMP #$00 ;TEST NOT OFF TOP SCREEN
BLT NOPLOT J IF OFF, DON’T LOT
CMP #$C0 ;TEST NOT OFF BOTTOM SCREEN
BGE NOPLOT ;IF OFF, DON’T PLOT
STA TEMPI ; STORE VALUE IN TEMPI
LDA EOFFX ,

X

; LOCATE X POSITION
STA HORIZ

EL00P3 LDY TEMPI ;FIND LINE ADRESS TO PLOT ON SCREE!
JSR GETADR
LDA #$F0 ; VALUE OF ALL SHAPE BYTES
EOR (HIRESL) ,

Y

;XOR WITH SCREEN
STA (HIRESL)

f Y ;PLOT ON SCREEN
DEC TEMPI ;NEXT LINE, IN THIS CASE DRAWING -
DEC DEPTH ;FROM BOTTOM TO TOP
BNE EL00P3 ;DONE?

NOPLOT I NX ;D0 NEXT PARTICLE
CPX EBLOCK ;DONE WITH ALL PARTICLES IN GROUP?
BNE EPLOT

1

; NO, CONTINUE
LDA #$30
JSR $FCA8 ; DELAY

»
RTS

*SCORE
*

SUBROUTINE

SCORE INC KILLNUM ; ANOTHER ALIEN KILLED
INC SCORE

A

; INCREMENT COUNTER
LDA SCOREA
CMP #$0A
BLT SCRSET ;IF <10 DON'T CARRY TENS DIGIT
LDA #$00 ;ZERO OUT l'S DIGIT
STA SCOREA

SC0RE10 INC SCOREB ; ADD CARRY IN TENS
LDA SCOREB
CMP #$0A
BLT SCRSET ! IF <10 DON'T CARRY TO 100’S DIGIT
LDA #$00 jZERO OUT 10 'S DIGIT & l’S DIGIT
STA SCOREB
INC SCORC

; ADD CARRY IN 100’S
LDA SCOREC
CMP #$0A
BLT SCRSET ;SKIP IF LESS 999
LDA #$00 j RESET TO 0 IF 1000
STA SCOREA
STA SCOREB

262

STA SCOREC6690: 8D 20 60 841

842 *

843 *SCORE SETUP ROUTINE FOR DRAW
844 *

6693: A9 20 845 SCRSET LDA #$20
6695: 85 27 846 STA HIRESH
6697: A9 23 847 LDA #$23 ; SETUP SCREEN LOCATION TO PLOT —
6699: 85 26 848 STA HIRESL ; SCOREC ,100'S DIGIT
669B: A9 01 849 LDA #$01 ; DIGIT 1 BYTE WIDE
669D: 8D 10 60 850 STA LNGH
66AO: A9 6A 851 LDA #>SCORESH
66A2: 85 51 852 STA SHPH
66A4

:

AC 20 60 853 LDY SCOREC
66A7

:

B9 30 6A 854 LDA SCOREP ,Y
; INDEX TO CORRECT SHAPE FOR DIGIT—

66AA: 85 50 855 STA SHPL ; DRAWN
66AC: 20 E8 66 856 JSR SCOREDR ;DRAW 100'S DIGIT
66AF: A9 20 857 LDA #$20 ; SETUP SCREEN LOCATION TO
66B1

:

85 27 858 STA HIRESH
66B3: A9 24 859 LDA #$24 ;PLOT SCOREB ,10'S DIGIT
66B5: 85 26 860 STA HIRESL
66B7: A9 01 861 LDA #$01
66B9: 8D 10 60 862 STA LNGH
66BC: A9 6A 863 LDA #>SC0RESH
66BE: 85 51 864 STA SHPH
66C0: AC IF 60 865 LDY SCOREB
66C3: B9 30 6A 866 LDA SCOREP,

Y

66C6: 85 50 867 STA SHPL
66C8: 20 E8 66 868 JSR SCOREDR ;DRAW 10' S DIGIT
66CB: A9 20 869 LDA #$20
66CD: 85 27 870 STA HIRESH
66CF: A9 25 871 LDA #$25 ; SETUP SCREEN LOCATION TO
66D1

:

85 26 872 STA HIRESL ;PLOT SCOREA, 1'S DIGIT
66D3: A9 01 873 LDA #$01
66D5: 8D 10 60 874 STA LNGH
66D8: A9 6A 875 LDA #>SCORSH
66DA: 85 51 876 STA SHPH
66DC: AC IE 60 877 LDY SCOREA
66DF

:

B9 30 6A 878 LDA SCOREP,

Y

66E2: 85 50 879 STA SHPL
66E4: 20 E8 66 880 JSR SCOREDR ;DRAW l'S DIGIT
66E7: 60 881 RTS

882 *

883 *SCORE DRAWING ROUTINE
884 ft

66E8: A2 00 885 SCOREDR LDX #$00
66EA: AO 00 886 LDY #$00 ; OFFSET INTO LINE ALREADY SET —
66EC: A1 50 887 SCORED

2

LDA (SHPL,X) ; IN SCRSET
66EE: 91 26 888 STA (HIRESL),

Y

66F0: A5 27 889 LDA HIRESH
66F2: 18 890 CLC
66F3: 69 04 891 ADC #$04
66F5: 85 27 892 STA HIRESH
66F7

:

E6 50 893 INC SHPL
66F9: C9 40 894 CMP #$40
66FB: 90 EF 895 BCC SC0RED2
66FD: E9 20 896 SBC #$20
66FF: 85 27 897 STA HIRESH
6701: CE 10 60 898 DEC LNGH
6704: FO 03 899 BEQ SC0RED3
6706: C8 900 INY

6707: DO E3 901
6709: 60 902

903

904
905
906

670A: 00 00 00
670D: 00 00 00
6710: 00 00 907
6712: 80 80 80
6715: 80 80 80
6718: 80 80 908
671A: 00 00 00
671D: 00 00 00
6720: 00 00 909
6722: 80 80 80
6725: 80 80 80
6728: 80 80 910
672A: 00 00 00
672D: 00 00 00
6730: 00 00 911
6732: 80 80 80
6735: 80 80 80
6738: 80 80 912
673A: 00 00 00
673D: 00 00 00
6740: 00 00 913
6742: 80 80 80
6745: 80 80 80

BNE SC0RED2
SC0RED3 RTS
*

TABLES ^*****##*#*
*

VERTICAL TABLES

YVERTL HEX 0000000000000000

HEX 8080808080808080

HEX 0000000000000000

HEX 8080808080808080

HEX 0000000000000000

HEX 8080808080808080

HEX 0000000000000000

6748: 80 80 914 HEX
674A: 28 28 28
674D: 28 28 28
6750: 28 28 915 HEX
6752: A8 A8 A8
6755: A8 A8 A8
6758: A8 A8 916 HEX
675A : 28 28 28
675D: 28 28 28
6760: 28 28 917 HEX
6762: A8 A8 A8
6765: A8 A8 A8
6768: A8 A8 918 HEX
676A: 28 28 28
676D: 28 28 28
6770: 28 28 919 HEX
6772: A8 A8 A8
6775: A8 A8 A8
6778: A8 A8 920 HEX
677A: 28 28 28
677D: 28 28 28
6780: 28 28 921 HEX
6782: A8 A8 A8
6785: A8 A8 A8
6788: A8 A8 922 HEX
678A: 50 50 50
678D: 50 50 50
6790: 50 50 923 HEX
6792: DO DO DO
6795: DO DO DO
6798: DO DO 924 HEX

8080808080808080

2828282828282828

A8A8A8A8A8A8A8A8

2828282828282828

A8A8A8A8A8A8A8A8

2828282828282828

A8A8A8A8A8A8A8A8

2828282828282828

A8A8A8A8A8A8A8A8

5050505050505050

DODODODODODODODO

264

5050505050505050

679A 50 50 50

679D 50 50 50
67A0 50 50 925 HEX

67A2 DO DO DO
67A5 DO DO DO
67A8 DO DO 926 HEX

67AA 50 50 50

67AD 50 50 50

67B0 50 50 927 HEX

67B2 DO DO DO
67B5 DO DO DO
67B8 DO DO 928 HEX
67BA 50 50 50
67BD 50 50 50
67C0 50 50 929 HEX
67C2 DO DO DO
67C5 DO DO DO
67C8 DO DO 930

931 *
HEX

67CA 20 24 28

67CD 2C 30 34

67D0 38 X 932 YVERTH HEX
67D2 20 24 28
67D5 2C 30 34

67D8 38 X 933 HEX
67DA 21 25 29
67DD 2D 31 35
67E0 39 3D 934 HEX
67E2 21 25 29
67E5 2D 31 35
67E8 39 3D 935 HEX
67EA 22 26 2A

67ED 2E 32 36
67F0 3A 3E 936 HEX
67F2 22 26 2A
67F5 2E 32 36
67F8 3A 3E 937 HEX
67FA 23 27 2B
67FD 2F 33 37

6800 3B 3F 938 HEX
6802 23 27 2B
6805 2F 33 37
6808 3B 3F 939 HEX
680A 20 24 28
680D 2C 30 34

6810 38 X 940 HEX
6812 20 24 28

6815 2C 30 34
6818 38 X 941 HEX
681A 21 25 29
681D 2D 31 35
6820 39 3D 942 HEX
6822 21 25 29

6825 2D 31 35
6828 39 3D 943 HEX
68 2

A

22 26 2A
682D 2E 32 36
6830 3A 3E 944 HEX
6832 22 26 2A

6835 2E 32 36

DODODODODODODODO

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3O34383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

265

22262A2E32363A3E6838: jA 3E 945
683A: 23 27 2B
683D: 2F 33 37

6840: 3B 3F 946
6842: 23 27 2B
6845: 2F 33 37
6848: 3B 3F 947
684A: 20 24 28

684D: 2C 30 34
6850: 38 3C 948
6852: 20 24 28

6855: 2C 30 34

6858: 38 3C 949
685A: 21 25 29

685D: 2D 31 35
6860: 39 3D 950
6862: 21 25 29
6865: 2D 31 35
6868: 39 3D 951
686A: 22 26 2A
686D: 2E 32 36
6870: 3A 3E 952
6872: 22 26 2A
6875: 2E 32 36
6878: 3A 3E 953
687A: 23 27 2B
687D: 2F 33 37

6880: 3B 3F 954
6882: 23 27 2B
6885: 2F 33 37
6888: 3B 3F 955

956 *

957 -TABLES
958 *

688A : 00 00 00
688D: 00 00 00
6890: 00 959 TABLEX
6891: 28 38 48
6894: 58 68 28
6897: 38 960 TABLEY
6898: 01 01 01

689B: 01 01 01

689E: 01 961 ALIVE
689F: 00 00 00
68A2: 00 00 00
68A5: 00 962 USFLAG
68A6: 00 00 00
68A9: 00 00 00
68AC: 00 963 ONFLAG
68AD: 2D 40 70
68B0: 90 CO DO
68B3: FO 964 ONPOS
68B4: 00 00 01

68B7: 00 00 00
68BA: 01 965 SHPADR

966 *

68BB: 04 967 SHPLO
68BC: 14 968
68BD: 24 969
68BE: 34 970

HEX

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

HEX 23272B2F33373B3F

TO KEEP TRACK OF OBJECTS

HEX OOOOOOOOOOOOOO

HEX 28384858682838

HEX 01010101010101

HEX OOOOOOOOOOOOOO

HEX OOOOOOOOOOOOOO

HEX 2D407090C0D0F0

HEX 00000100000001

DFB SHAPES
DFB SHAPES+$10
DFB SHAPES+120
DFB SHAPES+$30

266

971 *

972 *MASK SHIP TABLE
68BF: 01 00 00
68C2: 03 00 00
68C5: 07 00 973 MSHIP HEX 0100000300000700
68C7: 00 OF 00
68CA: 00 7F 7F
68CD: 00 7F 974 HEX 000F00007F7F007

F

68CF: IF 07 7F

68D2: 7F IF 78
68D5: 7F 7F 975 HEX 1F077F7F1F787F7F

976 *SHAPE TABLE SHIP
68D7

:

80 00 00
68DA: 82 00 00
68DD: 82 00 977 SHIP HEX 8000008200008200
68DF: 00 8A 00
68E2: 00 AA D5
68E5: 80 AA 978 HEX 008A0000AAD580AA
68E7: 95 82 AA
68EA: D5 8A A8
68ED: D5 AA 979 HEX 9582AAD58AA8D5AA

980 *•

981 *SHAPE BOMB
68EF: 07 7E 07 982 SHBOMB HEX 077E07

983 DS 18

984 a*

985 *SHAPE ALIEN EVEN
6904: 28 28 OA
6907: 2A 2A 22

690A: 22 22 986 SHAPES HEX 28280A2A2A222222
690C: 00 01 01

690F

:

01 05 04
6912: 04 04 987 HEX 0001010105040404

988 *SHAPE SAUCER EVEN
6914: 40 70 30
6917: AA AA 70
691 A: 00 00 989 HEX 407030AAAA700000
691C: 01 07 06
69 IF: D5 D5 07
6922: 00 00 990 HEX 010706D5D5070000

991 *0DD ALIEN SHAPE
6924: 50 54 04
6927: 54 55 11

692A: 11 11 992 HEX 5054045455111111
69 2C: 00 00 02
692F: 02 02 02
6932: 02 02 993 HEX 0000020202020202

994 *0DD SAUCER SHAPE
6934: 40 70 30
6937: D5 D5 70
693A: 00 00 995 HEX 407030D5D5700000
69 3C: 01 07 06
693F

:

AA AA 07
6942: 00 00 996 HEX 010706AAAA070000

997 *

998 *EXPLOSION TABLES
6944: 08 09 OA
6947: OB OB OA
694A: 09 08 999 EOFFX HEX 08090A0B0B0A0908
694C: 07 08 09

HEX 0708090A0B0C0C0B

694F: OA OB OC
6952: OC OB 1000
6954: OA 08 07
6957: 05 06 08
695A: 09 OA 1001
695C: OC OD OE
695F: OE OD OC
6962: OB 09 1002
6964: 07 06 04
6967 : 05 06 08
696A: OA OC 1003
696C: OE OF OF
696F: OE OD OB
6972: 09 07 1004
6974: 05 04 02
6977: 03 05 08
697A: OB OD 1005
697C: OF 10 11

697F: 10 OF OD
6982: OB 08 1006
6984 : 06 04 03
6987: 02 00 01
698A: 04 07 1007
698C: OA OE 11

698F: 12 13 12
6992: 11 OF 1008
6994: OB 07 04
6997: 02 01 00 1009
699A: FC F8 F8
699D: FC 04 08
69AO: 08 04 1010 EOFFY
69A2: F8 FO EC
69A5: EC FO F8
69A8: 04 OC 1011
69AA: 10 OC 04
69AD: F8 EC E4
69B0: EO E4 1012
69B2: E4 EC F4
69B5: 00 OC 14
69B8: 18 1C 1013
69BA: 14 08 FO
69BD: E4 DC D4
69C0: D4 DC 1014
69C2: E4 FO 00
69C5: 14 20 24
69C8: 28 20 1015
69CA: 14 00 EC
69CD: EO D4 CC
69D0: C8 DO 1016
69D2: D8 E8 FC
69D5: 14 24 2C
69D8: 34 34 1017
69DA: 2C 20 10
69DD: 00 E4 DO
69E0: C8 CO 1018
69E2: B8 C4 D4
69E5: E4 FC 18
69E8: 2C 38 1019
69EA: 48 40 38
69ED: 28 10 00 1020

HEX 0A0807050608090A

HEX 0C0D0E0E0D0C0B09

HEX 0706040506080A0C

HEX 0E0F0F0E0D0B0907

HEX 0504020305080B0D

HEX 0F1 0 1 1 100F0D0B08

HEX 0604030200010407

HEX 0A0E1 112131 21 10F

HEX 0B0704020100

HEX FCF8F8FC04080804

HEX F8FOECECF0F8O4OC

HEX 100C04F8ECE4EOE4

HEX E4ECF4000C14181C

HEX 1408F0E4DCD4D4DC

HEX E4F0001 420242820

HEX 1400ECE0D4CCC8D0

HEX D8E8FC14242C3434

HEX 2C201000E4DOC8CO

HEX B8C4D4E4FC182C38

HEX 484038281000

268

1021 DS 24

1022 *

1023 *SHAPES FOR SCOREKEEPING

6A08: 3F 01 01

6A0B: 3F 20 20

6A0E: 3F 00 1024 SCOREWD HEX 3F01013F20203F00
6A10: 3C 02 01

6A13: 01 01 02
6A16: 3C 00 1025 HEX 3C02010101023C00
6A18: IE 21 21

6A1B: 21 21 21

6A1E: IE 00 1026 HEX 1E2121212121 1E00

6A20: 3F 21 21

6A23: 3F 09 11

6A26: 21 00 1027 HEX 3F21213F091 12100
6A28: 3F 01 01

6A2B: IF 01 01

6A2E: 3F 00 1028 HEX 3F0101 1F01013F00
1029 *INDEX TO LO BYTE SCORE NUMBER SHAPES

6A30: 3A 1030 SCOREP DFB SCORESH
6A31 : 42 1031 DFB SC0RESH+$08
6A32: 4A 1032 DFB SC0RESH+$10
6A33; 52 1033 DFB SC0RESH+$18
6A34: 5A 1034 DFB SC0RESH+$20
6A35: 62 1035 DFB SC0RESH+$28
6A36: 6A 1036 DFB SC0RESH+$30
6A37 : 72 1037 DFB SC0RESH+$38
6A38: 7

A

1038 DFB SC0RESH+$40
6A39: 82 1039 DFB SC0RESH+$48

1040 *

1041 *NUMBER SHAPES
6A3A: 1C 22 22

6A3D: 22 22 22
6A40: 1C 00 1042 SCORESH HEX 1C2 222222222 1C00
6A42: 08 OC 08
6A45: 08 08 08
6A48: 1C 00 1043 HEX 080C08080808 1C00
6A4A: 1C 22 20

6A4D: 18 04 02
6A50: 3E 00 1044 HEX 1C22201804023E00
6A52: 3E 20 10

6A55: 08 10 22

6A58: 1C 00 1045 HEX 3E20100810221C00
6A5A: 18 14 12

6A5D: 11 3F 10

6A60: 10 00 1046 HEX 1814121 13F101000
6A62: 3E 02 02

6A65: 3E 20 22

6A68: 1C 00 1047 HEX 3E02023E202 2 1COO
6A6A: 38 04 02

6A6D: IE 22 22
6A70: 1C 00 1048 HEX 3804021E22221C00
6A72: 3E 20 10

6A75: 08 04 04
6A78: 04 00 1049 HEX 3E20100804040400
6A7A: 1C 22 22

6A7D: 1C 22 22
6A80: 1C 00 1050 HEX 1C22221C22221COO
6A82: 1C 22 22
6A85: IE 20 10

269

HEX 1C22221E2010OE006A88: OE 00 1051
6A8A: 1C 22 22
6A8D: 22 22 22
6A90: 1C 00 1052 HEX 1C22222222221COO

—END ASSEMBLY— 2706 BYTES

EVEN

————
A A a

•— — _
40 01

——— 9 • 9 • #
• •
— —— 70 07

30 06

AA D5

AA D5

70 07

00 00

00 00

• • • • • •
j— — _

A a A
•— • •

— w 9 9 • •- #— ——

brbrbrbrbrb R B R

EVEN OFFSET SHAPE

HI-RES SCREEN SCROLLING

ODD

40 01

70 07

30 06

D5 AA

D5 AA

70 07

00 00

00 00

270

There are an increasing number of games that require fast scrolling. Racing
car games, where the screen (or at least sections of the screen scroll) rapidly
vertically, are good examples. It is certainly much easier to scroll the screen in

that direction, because only two adjacent lines are involved, and the screen

addresses for those two lines are easily referenced from lookup tables.

The algorithm for scrolling down the screen involves taking the bytes from

one line and storing them in the line directly below. This is done across a row
for each column. The most important thing is that you start from the bottom of

the screen or you will overwrite lines. Also, the bottom line must be transferred

to the top of the screen if a wrap-a-round effect is desired. A cute trick which

minimizes the code considerably is to extend the YVERT table one extra byte.

That byte is the address of the Oth line. Therefore, line #191 can be moved to

line #192, which is actually line #0.

Moving an entire screen upwards a single line by this method is not that fast,

but usually, as in racing games, only narrow background strips need to be

scrolled. This produces more reasonable scrolling rates. Other techniques

involve using a background that occupies every other screen line, then scrolling

it two lines at a time. The Phantom’s Five game appears to use this method.

Another approach is to utilize straight in-line code, where scrolling for all the

lines is done a column at a time. Bytes are moved upwards with the following

code

LDA $3CD0,Y
STA $3FD0,Y

LDA $2800,Y
STA $2C00,Y
LDA $2400,

Y

STA $2800,

Y

LDA $2000,Y
STA $2400,

Y

where Y is looped from $0 to $27 across the screen. This code is at least three

times faster than the first method.
Scrolling the screen upwards is quite similar to scrolling the screen

downwards. It requires moving the screen memory from the lower line to the

upper line, across all 40 columns. The bytes in the Oth line must be moved to

the 191st line if a wrap-a-round effect is desired. This requires extra code, since

we can’t do any fancy tricks as we did before.

The two scrolling routines, one up and one down, have been put together in

the following program. The scrolling windows have been set so that part of the

screen scrolls up and part of the screen scrolls down, while the remainder
remains stationary. The variables that control the windows are LEFT and
RIGHT for scrolling down, and LEFTU and RIGHTU for scrolling up.

These values can be modified in lines 16, 18, 20 and 22.

The flow charts and code are presented below:

271

|

Y register = $BF

FIND LINE ADDRESS TOP LINE #191

Y register = 0
line = Y register

FIND LINE ADDRESS BOTTOM LINE #0

NOTE: MOVE LINE #0
TO BOTTOM LINE #191

START AT TOP
Y register = 0

n FIND LINE ADDRESS TOP LINE
,

INCREMENT Y register

FIND LINE ADDRESS BOTTOM LINE

LINE = Y register

-H Y register = LEFTU I

LOAD BYTE FROM BOTTOM LINE, Yth POSITION

STORE BYTE TOP LINE, Yth POSITION

INY FOR NEXT BYTE

no

—
j
DONE WITH LINE?

|AT BOTTOM YET? LINE @ $BF?

273

6000: 4C 08 60 3

4

5

6
7

8

9
10
11

12
6008: AD 50 CO 13
600B: AD 52 CO 14
600E: AD 57 CO 15
6011: A9 06 16
6013: 8D 03 60 17
6016: A9 OA 18
6018: 8D 04 60 19
601B: A9 20 20
601D: 8D 06 60 21
6020: A9 25 22
6022: 8D 07 60 23
6025: 20 2E 60 24
6028: 20 5D 60 25
602B: 4C 25 60 26

27
602E: AO CO 28

29
6030: B9 AA 60 306030: B9 AA 60 30
6033: 85 08 31
6035: B9 6B 61 32
6038: 85 09 33
603A: 88 34
603B: B9 AA 60 35
603E: 85 06 36
6040: B9 6B 61 37
6043: 85 07 38
6045: 8C 05 60 39
6048: AC 03 60 40
604B: B1 06 41
604D: 91 08 42
604F: C8 43
6050: CC 04 60 44
6053: DO F6 45
6055: AC 05 60 46
6058: CO 00 47
605A: DO D4 48

605D: AO BF 53
605F: B9 A A 60 54
6062: 85 06 55
6064: B9 6B 61 56
6067: 85 07 57
6069: AO 00 58
606B: 8C 05 60 59
606E: B9 AA 60 60

SCROLL UP & down subrou
ORG $6000
JMP PROG

LEFT DS 1

RIGHT DS 1

LINE DS 1

LEFTU DS 1

RIGHTU DS 1

TOPL EQU $6
TOPH EQU T0PL+$1
BOTTOML EQU $8
BOTTOMH EQU BOTTOML+$

1

PROG LDA $C050
LDA $C052
LDA $C057
LDA #$06
STA LEFT
LDA #$0A
STA RIGHT
LDA #$20
STA LEFTU
LDA #$25
STA RIGHTU

CONT JSR SCROLL
JSR SCROLLU
JMP CONT

SCROLL DOWN SUBROUTINE
SCROLL
*

LDY #$C0

START LDA YVERTL,

Y

STA BOTTOML
LDA YVERTH,

Y

STA BOTTOMH
DEY
LDA YVERTL,

Y

STA TOPL
LDA YVERTH,

Y

STA TOPH
STY LINE
LDY LEFT

LOOP LDA (TOPL) ,

Y

STA (BOTTOML),Y
INY
CPY RIGHT
BNE LOO ;]

LDY LINE
CPY #$00
BNE START
RTS

;LEFT WINDOW SCROLL DOWN

; RIGHT WINDOW SCROLL DOWN

;LEFT WINDOW SCROLL UP

; RIGHT WINDOW SCROLL UP

; START WITH BOTTOM LINE —
; AND WORK TO TOP
;FIND SCREEN ADDRESS —
;0F BOTTOM LINE

; DECREMENT LINE NUMBER
•FIND SCREEN ADDRESS TOP LINE

;TEMP STORE Y REGISTER
! START SHIFTING LINE
iLOAD BYTE ON SCREEN
; STORE BYTE ON LINE BELOW
;NEXT BYTE
;DONE WITH LINE?
NO, DO NEXT BYTE ON LINE
; RESET Y REGISTER WITH LINE
; AT TOP YET?

SCROLL UP SUBROUTINE
FIRST TAKE TOP LINE AND PUT ON BOTTOM

qrpnrTn
S THIN

?SI ?
T AS LINE #0 BELOW LINE #191SCROLLU LDY

LDA
STA
LDA
STA
LDY
STY
LDA

#$BF
YVERTL ,

Y

TOPL
YVERTH ,

Y

TOPH
#$00
LINE
YVERTL,

Y

LINE #191
FIND SCREEN ADDRESS
OF TOP LINE

;FIND SCREEN ADDRESS

274

6071 85 08 61 STA BOTTOML ;0F BOTTOM LINE

6073 B9 6B 61 62 LDA YVERTH ,

Y

6076 85 09 63 STA BOTTOMH

6078 4C 95 60 64 JMP LXP2-3 ;GOTO INSTRUCTION BEFORE L00P2

607B AO X 65 LDY #$00 ; START AT TOP

607D B9 AA 60 66 STARTU LDA YVERTL, Y ;FIND SCREEN ADDRESS —
6080 85 06 67 STA TOPL ;0F TOP LINE

6082 B9 6B 61 68 LDA YVERTH,

Y

6085 85 07 69 STA TOPH

6087 C8 70 INY ;NEXT ROW

6088 B9 AA 60 71 LDA YVERTL ,Y ;FIND SCREEN ADDRESS —
608B 85 08 72 STA BOTTOML ;0F BOTTOM LINE

608D B9 6B 61 73 LDA YVERTH,

Y

6090 85 09 74 STA BOTTOMH

6092 8C 05 60 75 STY LINE ;TEMP STORE Y REGISTER

6095 AC 06 60 76 LDY LEFTU ; START SHIFTING LINE

6098 B1 08 77 LOOP2 LDA (BOTTOML), Y;L0AD BYTE ON SCREEN

609A 91 06 78 STA (TOPL) , Y ; STORE BYTE ON LINE ABOVE

609C C8 79 INY ;NEXT BYTE

609D CC 07 60 80 CPY RIGHTU ;DONE WITH LINE?

60A0 DO F6 81 BE LOOP 2 ; NO , DO NEXT BYTE ON LINE

60A2 AC 05 60 82 LDY LINE ; RESET Y REG. WITH LINE
60A5 CO BF 83 CPY #$BF ; AT BOTTOM YET?

60A7 DO D4 84 BNE STARTU

60A9 60 85 RTS

60AA X 00 00
60AD 00 00 00
60B0 X X 86 YVERTL HEX oxxxooxoxoo
60B2 X 80 80
60B5 80 80 80
60B8 80 80 87 HEX 8080808080808080
60BA X X X
60BD 00 X X
60C0 X X 88 HEX 0X00X0X000X0
60C2 : X 80 80
60C5 80 X 80
6X8 80 X 89 HEX 8X0808080808080
6XA X X 00
6XD X X 00
60D0 X X 90 HEX OXOOXXXOOXO
60D2 X 80 X
60D5 80 X 80
60D8 80 X 91 HEX 8080808080808080
60DA : X 00 X
60DD : X X X
60E0 : X X 92 HEX 0X0X0000000X0
60E2 : X 80 80
60E5 80 X 80
60E8 80 X 93 HEX 8080808080808080
60EA 28 28 28

60ED 28 28 28
60F0 28 28 94 HEX 2828282828282828
60F2 A8 A8 A8
60F5 A8 A8 A8
60F8 A8 A8 95 HEX A8A8A8A8A8A8A8A8
60FA 28 28 28
60FD 28 28 28

61X 28 28 96 HEX 2828282828282828
6102 A8 A8 A8
6105 A8 A8 A8

6108: A8 A8 97
610A: 28 28 28
610D: 28 28 28
6110: 28 28 98
6112: A8 A8 A8
6115: A8 A8 A8
6118: A8 A8 99
61 1A: 28 28 28
61 ID: 28 28 28
6120: 28 28 100
6122: A8 A8 A8
6125: A8 A8 A8
6128: A8 A8 101
612A: 50 50 50
612D: 50 50 50
6130: 50 50 102
6132: DO DO DO
6135: DO DO DO
6138: DO DO 103
613A: 50 50 50
613D: 50 50 50
6140: 50 50 104
6142: DO DO DO
6145: DO DO DO
6148: DO DO 105
61 4A: 50 50 50
614D: 50 50 50
6150: 50 50 106
6152: DO DO DO
6155: DO DO DO
6158: DO DO 107
61 5A: 50 50 50
615D: 50 50 50
6160: 50 50 108
6162: DO DO DO
6165: DO DO DO
6168: DO DO 00 109

110 *
616B: 20 24 28
616E: 2C 30 34
6171: 38 X 111 YVERTH
6173: 20 24 28
6176: 2C 30 34
6179: 38 3C 112
617B: 21 25 29
617E: 2D 31 35
6181: 39 3D 113
6183: 21 25 29
6186: 2D 31 35
6189: 39 3D 114
618B: 22 26 2A
618E: 2E 32 36
6191: 3A 3E 115
6193: 22 26 2A
6196: 2E 32 36
6199: 3A 3E 116
619B: 23 27 2B
619E: 2F 33 37
61A1: 3B 3F 117
61A3: 23 27 2B

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 2828282828282828

HEX A8A8A8A8A8A8A8A8

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODO

HEX 5050505050505050

HEX DODODODODODODODOOO

HEX 2024282C3034383C

HEX 2024282C3034383C

HEX 2125292D3135393D

HEX 2125292D3135393D

HEX 22262A2E32363A3E

HEX 22262A2E32363A3E

HEX 23272B2F33373B3F

23272B2F33373B3F
61A6: 2F 33 37

61A9: 3B 3F 118 HEX
61AB: 20 24 28
61AE: 2C 30 34
61B1

:

38 3C 119 HEX
61B3: 20 24 28
61B6: 2C 30 34
61B9: 38 3C 120 HEX
61BB: 21 25 29
61BE: 2D 31 35
61C1

:

39 3D 121 HEX
61C3: 21 25 29

61C6: 2D 31 35
61C9: 39 3D 122 HEX
61CB: 22 26 2A
6 ICE: 2E 32 36
61D1

:

3A 3E 123 HEX
61D3: 22 26 2A

61D6: 2E 32 36
61D9: 3A 3E 124 HEX
61DB: 23 27 2B
6 IDE: 2F 33 37
61E1: 3B 3F 125 HEX
61E3: 23 27 2B
61E6: 2F 33 37
61E9: 3B 3F 126 HEX
61EB: 20 24 28
61EE: 2C 30 34
61F1

:

38 3C 127 HEX
61F3: 20 24 28
61F6: 2C 30 34
61F9: 38 3C 128 HEX
61FB: 21 25 29
61FE: 2D 31 35
6201: 39 3D 129 HEX
6203: 21 25 29
6206: 2D 31 35
6209: 39 3D 130 HEX
620B: 22 26 2A
620E: 2E 32 36
6211: 3A 3E 131 HEX
6213: 22 26 2A
6216: 2E 32 36
6219: 3A 3E 132 HEX
621B: 23 27 2B

621E: 2F 33 37
6221: 3B 3F 133 HEX
6223: 23 27 2B
6226: 2F 33 37
6229: 3B 3F 20 134 HEX

—END ASSEMBLY-

ERRORS: 0

556 BYTES

2024282C3034383C

2024282C3034383C

2 1 25292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F20

277

the screen left or nght in the horizontal direction is slightly more
difficult. The normal scrolling direction for games is left, because objects in
most games travel from left to right, and the background terrain scrolls left
This method moves each byte in one of the 8 line subgroups leftwards, a byte at
a time. Byte-shifting starts at the 1st column, moving that byte to the Oth
column, then drops down to the next row, moves a byte again, until all eight
rows have been moved. Then the routine increments the column number and
repeats the operation until all 40 columns of eight rows have been moved It
does this for all 24 subgroups.

Normally, during scrolling, a new column of data is plotted at the 39th
column. Wrap-a-round is tricky, because when a byte is moved off the screen’s
left side it will reappear on a line l/3 higher on the screen. If you would like to
see this strange scrolling effect, change the value in line #25 to #$28.

Both the code and flow chart are shown below.

1

2
6000: 4C 05 60 3

4

5

6

7

8
6005: AD 50 CO 9
6008: AD 52 CO 10
600B: AD 57 CO 11
600E: A2 00 12
6010: BD 4A 60 13
6013: 85 FC 14
6015: BD 62 60 15
6018: 85 FB 16
601 A: AO 01 17
60 1C: 20 27 60 18
601F: E8 19
6020: EO 18 20
6022: 90 EC 21
6024: 4C OE 60 22

23
24

6027: A9 27 25
6029: 8D 04 60 26
602C: B1 FB 27
602E: 88 28
602F: 91 FB 29
6031: C8 30
6032: A5 FC 31
6034: 18 32
6035: 69 04 33
6037: 85 FC 34
6039: C9 40 35
603B: 90 EF 36
603D: E9 20 37
603F: 85 FC 38
6041: CE 04 60 39

*SCR0LL LEFT
0RG
JMP
DS
DS

EQU
EQU

BLOCK
LNGH
HIRESL
HIRESH

SUBROUTINE
$6000
PROG
1

1

$FB

HIRESL+$1
*ENTER HERE FIRST TIME ACCESS
PROG

START
NXBL0CK

LDA
LDA
LDA
LDX
LDA
STA
LDA
STA
LDY
JSR
INX
CPX
BLT
JMP

$C050
$C052
$C057
#$00
YBL0CKH ,

X

HIRESH
YBL0CKL ,

X

HIRESL
#$01
DRAW1

#$18
NXBLOCK
START

^SUBROUTINE TO DRAW EACH
*EACH SHAPE 1

DRAW1

DRAW2

LDA
STA
LDA
DEY
STA
INY
LDA
CLC
ADC
STA
CMP
BCC
SBC
STA
DEC

BYTE BY 8 ROWS
#$27
LNGH
(HIRESL),

Y

;0TH ROW OF 8 LINE BLOCKS
;GET SCREEN POINTERS FOR 1ST ROW -
;OF BLOCK

;NEED TO MOVE COLUMN #1 BYTE FIRST

;NEXT ROW
; BOTTOM YET?
;N0, CONTINUE
; SCROLL ENTIRE SCREEN AGAIN
SHAPE

(HIRESL),

Y

HIRESH

#$04
HIRESH
#$40
DRAW2
#$20
HIRESH
LNGH

;L0AD BYTE WANT TO MOVE LEFT
;L0 BYTE POINTER TO ONE BYTE LEFT
; STORE BYTE
; RETURN POINTER TO RIGHT

;THIS GETS TO NEXT ROW IN BLOCK

J ARE WE FINISHED WITH 8 ROWS
;N0 DO NEXT BYTE
; RETURN TO TOP ROW

278

6044: FO 03 40 BEQ DRAW3 ; FINISHED?
6046: C8 41 INY ;NEXT COLUMN OF 8 ROWS
6047: DO E3 42 BNE DRAW2
6049: 60 43 DRAW3 RTS

44 ^TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS
604A: 20 20 21

604D: 21 22 22
6050: 23 23 20
6053: 20 45 YBLOCKH HEX 20202121222223232020
6054: 21 21 22

6057: 22 23 23
605A: 20 20 21

605D: 21 46 HEX 21212222232320202121
605E: 22 22 23
6061: 23 47 HEX 22222323
6062: 00 80 00
6065: 80 00 80
6068: 00 80 28
606B: A8 48 YBLOCKL HEX 008000800080008028A8
606C: 28 A8 28
606F: A8 28 A8
6072: 50 DO 50
6075: DO 49 HEX 28A828A828A850D050D0
6076: 50 DO 50
6079: DO 50 HEX 50D050D0

—END ASSEMBLY-

ERRORS: 0

122 BYTES

280

CHAPTER 8

WHAT MAKES A GOOD GAME

There is no sure-fire way to predict whether a game will be successful, but
there are certain attributes that may ensure success. Certainly, a game should
have a goal, for, without one, what is the point in playing? The game should
also be challenging, since, without requiring some skill, you would tire of it

quickly. A game should evoke either a fantasy situation or your innate curiosi-

ty, for, without being novel or puzzling, it becomes boring. And lastly

(especially in arcade games), a game should be easily controllable in regards to

the interaction of the player with the computer game.
Game objectives take two different forms. There are games where the goal is

approached, like destroying the fleet of invaders in Galaxian or Space In-

vaders, or landing on the moon in Lunar lander. There are also games where
the goal is to avoid catastrophe. Examples of this range from preventing a
nuclear power plant meltdown in Three Mile Island to saving your cities dur-
ing a nuclear missile attack in Missile Command.

Goals must suit a player’s expectations or fantasies. This is why certain peo-
ple like certain certain types of games more than others. The battle-lines of
good against evil lurk in the background of many space games, wherein evil,

menacing invaders are bent on destruction of the Earth. It becomes the

player’s goal to protect the Earth as long as possible while scoring the most
points for killing aliens. The fantasy of destroying objects during a game ap-

peals to others. It can take the form of popping balloons by bouncing a clown
off a teeter-totter, such as in Clowns and Balloons, or breaking out bricks in a
wall, as in Breakout. In each case, the partially-destroyed wall or rows of
balloons presents a visually compelling goal and a graphic scorekeeping device
as well. Other goals that appeal to many range from accumulating the most
treasure while exploring an underground cavern to escaping from a crumbling
building before it collapses or before your food runs out.

Goals in most games imply that there is some end point, either when the goal
is reached or when you fail. It is often important to make sure the game doesn’t
just go on and on forever. Limits should be set. Sometimes these take the form
of time limits or the amount of ammunition, balls or ships left.

For a game to be considered challenging, it should have a goal where the out-

come is uncertain. If the player is certain to reach the goal or certain not to

reach it, the game is unlikely to be a challenge and the player will lose interest.

It is very easy to introduce randomness into a game by either hiding important
information or introducing random variables that draw the player towards
disaster. But you must be careful not to overdo this, since a totally random

game lacks a skill factor. Players quickly discover that they have no control
over the outcome.

A variable difficulty level is often used to alter the game’s level of play.
These levels, often with ego satisfying names like Star Commander or Pilot,

can be set by the player. Many games are designed to become harder the fur-

ther you get into them. This increasing skill level requirement presents an add-
ed challenge, while preventing the player from growing complacent. Often, the
technique is to speed up the game or place additional enemy craft into the bat-
tle. The player is required to play faster and better, honing his reflexes during
the process.

Any good game should offer a reward for reaching increasingly difficult

levels of play. Often, bonus points, extra balls, ships, or more ammunition are
rewarded for exceeding score thresholds. It is important that there be greater
rewards for winning than losing. A person’s ego is involved. A player wants to

beat a challenging game, not to be humiliated each time he loses.

Games either need to fulfill a player’s fantasy or stimulate their curiousity.

Computer game fantasies derive some of their appeal from the emotional needs
that they satisfy. Different fantasies appeal to different people.

Appealing to a player’s curiosity is often effective in keeping a game in-

teresting. While novelty is sometimes a crucial factor in the original purchase,
if the game has little depth, it becomes repetitious and boring. One method
that appeals to many game designers is to have the game progress to slightly

different scenarios. Some games change the opposition, while others vary the
scenery; some do both. The player has to excel if he is to satisfy his curiosity.

Games like Threshold, which progresses through 24 sets of alien spacecraft, or
Pegasus II, in which the scenery changes and the attacking aliens vary, offer

strong curiosity incentives.

A game’s controllability is one of the more important considerations in a
game’s design. It is sometimes referred to as human engineering. Designer’s
usually choose between keyboard and paddle/joystick control. While eye/hand
coordination is more effective using paddles or joysticks, programmers attemp-
ting to create games with too many control functions will opt for a keyboard
control system. At times, they produce a game that requires nine or ten
keyboard controls which, unfortunately, only a pianist can operate. Some
prefer keyboard controls because they offer a faster response time than paddle
inputs, or they are easier to program, or this approach doesn’t limit the market
to an audience with expensive joysticks. I don’t think the latter should in-

fluence your choice, but thought should be given to which method would make
the game more enjoyable. Games that require considerable time to master the
controls, often prove too frustrating to play.

Apparently, Apple owners like games which pit them against a competitive
computer opponent. There are several multi-player games in which groups of
two or more will simultaneously compete against each other. Most of these
contests are sports or card games involving two or more players. The
cooperative game is rarely seen, except in games where the computer com-

282

petitor is much too skillful. The arcade game “Ripoff 9

involves a computer
opponent that is more than a match for two players playing simultaneously. It

is the lone exception to the one-player-against-the-machine game.
So far, we have discussed theory and generalizations that should increase a

game’s playability and appeal to the public. Concrete examples of the more
popular games should give you a much more solid foundation for your own
designs.

EXAMPLE ARCADE GAMES

Space Invaders was the first really popular arcade game. It is a game
wherein the object is to defend your turf against an alien horde of ferocious in-

vaders that attack your castles and gun bases with a barrage of undulating
bullets. It is actually a timed game, since you only have a limited amount of
time to destroy the entire attacking wave before they descend to the ground in

marching formation and overrun your lone gun base.

The elimination of each alien acts as a visual scorekeeping device. Although
you can never win, only survive as long as possible (thus getting the maximum
play time for your quarter), elimination of each attacking wave is an in-

termediate goal and a staving off of your inevitable doom. Each successive level

becomes more difficult since the aliens, which begin their attack closer to

Earth, limit the amount of time you have to destroy them. Their approaching
proximity to your mobile gun base decreases your reaction time needed to

avoid enemy fire.

Shoot- ’em-up games like Sneakers, Galaxian, Threshold and Gamma
Goblins are actually spin-offs of the Space Invaders theme. Whether they are
set in space or on the ground, each has varieties of targets that are bent on your
destruction. The targets or attackers are no longer static. Either they appear to

dodge your fire, or they resort to kamikaze-type attacks.

The strong appeal of these types of games is based on curiousity and game
depth. You are inspired to do better with each game just to see what the at-

tackers are going to look like in the next level and what their tactics will consist

of. The concept is variety, with each successive level slightly harder than the
last. Although most offer an unlimited number of bullets, Threshold controls
rapid, random, and wasteful firing by overheating your lasers. Thus, your fir-

ing must be more accurate and paced during the game.

The popularity of Pacman can be attributed to the game’s design. First, it

satisfies the fantasy concept of a person’s childhood dreams. As children, they
dreamt that they were being chased by evil monsters or ghosts, and felt

powerless to stop them. They wished that there was some way to turn the

tables, if only for a few moments. Pacman ’s four energy dots fulfill that fan-

tasy. The game also offers the visual feedback of the number of remaining dots

to be eaten at each level. And since clearing each individual level is an im-
mediate goal, even beginners believe a level can be cleared. Because Pacman is

283

a game of consumption rather than one of destruction, it appeals to players of
both sexes.

The game becomes a learning experience to the more advanced player, since
the ghosts follow a discernible pattern rather than move randomly. A player is

able to eventually predict their movements and consequently develop a tech-

nique to clear all the dots on a particular level. The long term goal is survival
and the highest score. The game is designed so that you gain more pleasure as

you get better. Thus, players are willing to devote the time and money to

master the game.

Scrolling games, such as Scramble and Vanguard as played in the arcades,
and Pegasus II on the Apple, wherein your ship travels over a multi-screen
world, benefit strongly from player curiousity and visual variety. Vanguard, a
shoot- ’em-up game in which your ship is attacked by a variety of enemy vessels

and creatures, has an extremely long sinuous tunnel with various types of
chambers. The game has so many sections, combined with scrolling directions

which change from horizontal to diagonal to vertical, that it is like playing
many different arcade games at once. The player is given the option several

times during the game to enter battle with a time-limited energized spacecraft
which is equipped for ramming the enemy, or merely four plain old directional

lasers. A map displayed at the lower corner informs the player of his progress.
The curiousity factor is so enticing in this game, thirty seconds are provided to

lure you into inserting another quarter in order to allow you to continue from
where you left off with this unique form of arcade addiction.

The popularity of Pacman can be attributed to the game’s design. First, it

satisfies the fantasy concept of a person’s childhood dreams. As children, they
dreamt that they were being chased by evil monsters or ghosts, and felt

powerless to stop them. They wished that there was some way to turn the

tables, if only for a few moments. Pacman’s four energy dots fulfill that fan-

tasy. The game also offers the visual feedback of the number of remaining dots
to be eaten at each level. And since clearing each individual level is an im-
mediate goal, even beginners believe a level can be cleared.

The game becomes a learning experience to the more advanced player, since

the ghosts follow a discernible pattern rather than move randomly. A player is

able to eventually predict their movements and consequently develop a tech-

nique to clear all the dots on a particular level. The long term goail is survival

and the highest score. The game is designed so that you gain more pleasure as

you get better. Thus, players are willing to devote the time and money to

master the game.
Scrolling games, such as Scramble and Vanguard as played in the arcades,

and Pegasus II on the Apple, wherein your ship travels over a multi-screen
world, benefit strongly from player curiousity and visual variety. Vanguard, a
shoot-’em-up game in which your ship is attacked by a variety of enemy vessels

and creatures, has an extremely long sinuous tunnel with various types of
chambers. The game has so many sections, combined with scrolling directions

which change from horizontal to diagonal to vertical, that it is like playing

284

many different arcade games at once. The player is given the option several
times during the game to enter battle with a time-limited energized spacecraft
which is equipped for ramming the enemy, or merely four plain old directional
lasers. A map displayed at the lower corner informs the player of his progress.
The curiousity factor is so enticing in this game, thirty seconds are provided to
lure you into inserting another quarter in order to allow you to continue from
where you left off with this unique form of arcade addiction.

Pegasus II, as implemented on the Apple, offers variety in terrain, targets
and types of enemy. Besides trying to survive ground-launched rockets, a
meteor field, attacking birds, and flying saucers, you must defeat a horde of
laser-armed dragons that separate you from your refueling base. Your im-
mediate goal is to reach the base before running out of fuel. This means ac-
curate shooting, for enemies like dragons can delay your rendezvous with the
base. Long term goals consist of reaching the tunnel and scoring the highest
number of points.

In closing, I hope I have provided you with some acquired skills for creating
your own visual masterpieces. The arcade versions described above are, as of
this writing, being surpassed in quality by the dazzling array of games current-
ly arriving on the personal computer market from talented graphics program-
mers.

My hope is that this book has provided some techniques and insights into
graphics game design and programming; possibly even enough to allow you to
join the ranks of successful Apple game designers.

285

INDEX

Addition & Subtraction, 45-46

Addressing modes, 42, 74, 112-114

AND instruction, 131-132, 209-210

Animation Apple Shapes, 26-29

Animation HPLOT Shapes, 78-81

Apple Shape Tables, 16-25, 81-85

Applesoft Hi-Res, 9, 29

Applesoft ROM, 69-71

ASL & LSR instructions, 53

Assemblers, 25

Assembly language, 36-46

Background fill, 14

Background preservation while drawing, 140-146

Bit-mapped Shape Tables, 100-109

Bomb drop, 154-157, 161-164

Branch instructions, 44-45

Breakout game, 51-68

Bullet motion, 157-160

Character generators, 30-33

Collisions, 209-212

Color problems, 123-127

Compare instructions, 43

Debug package, 204-205

Drawing bit-mapped shapes, 111-118

EOR instruction, 119-120

Explosions, 214-220

Game design & theory, 281-285

Graphic screen layouts, 9, 87

Graphic screen switches, 10

Hexadecimal numbers, 36-37

HI-RES color, 14, 89-92

HI-RES screen layout, 87-99

HPLOT shapes, 73-77

286

Increment & decrement instructions, 43

Interfacing bit-mapping to Applesoft, 135-139

Invaders game, 164-181

Joystick control, 152-153

Laser fire, 205, 208

Line memory address, 93-97

Load instructions, 42

Lookup tables, 111-112

LO-RES graphics, 47-50

Memory constraints, 1

1

Memory map, 38-39

Mountain background generator, 239

Mountain collision test, 246-248

Movement constraints & advantages, 132-133

Odd / even test, 54

OR instruction, 120

Order of game events, 246

Pac-Man, 283-284

Paddle button trigger, 205

Paddle crosstalk, 152-153

Paddle routine, 147-151

Page flipping, 15-16, 225-236

Pegasus II, 285

Print routine, 56-57

Program Status Word, 39

Raster shape tables, 100-109

Scorekeeping, 55-56, 220-224

Screen erase, 128-131

Scrolling — vertical, 271-277

Scrolling — horizontal, 278-280

Scrolling games, 237-270

Scrolling subroutine, 240-241

Selective drawing control, 131-134

Space Invaders, 283

Space ship — steerable, 183-194

Space ship — steerable & floating, 195-203

Store instructions, 42-43

XDRAWing bit-mapped shapes, 119-123

Jeffrey Stanton received a BME (1967) and a MSME (1969) from
Rensselaer Polytechnic Institute. He worked as a control systems engineer and
mechanical engineer for the aerospace industry in the early 1970’s. His strong

interest in computer game design sidetracked his career as a photographer and
book illustrator in the late 1970’s. Although he occasionally does a commercial
assignment and owns a postcard company, much of his time is devoted to keep-

ing abreast of the latest arcade game programming techniques on both the

Apple and the Atari computers. He has several Apple games on the market and
is writing a complex arcade game on the Atari 800. Jeffrey currently resides in

Venice, California.

288

• Learn Apple Hi-Res Graphics from BASIC and machine
language.

• Learn how to speed up your graphics.

• Learn raster graphics and bit mapping techniques.

• The only book to explain how to design arcade games from
start to finish through the use of text, flow charts and work-

ing examples.

• Learn the theory of how to design a playable game.

• Requires a solid foundation in BASIC programming on the

Apple II.

$19.95

